Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияПодключение лампы с электромагнитным дросселем

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.

Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияМеханизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».

Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс.

Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние.

После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.

Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети.

Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения.

Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияТак выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.

Потери мощности в дросселях

Класс Потери мощности, Вт
дросселя С лампой С лампой С лампой
18 Вт 36 Вт 58 Вт
D 12 10 14
С 10 9 12
В2 8 7 9
В1 6 6 8

В силу физических свойств дросселя на нем происходит сдвиг по фазам между напряжением и током. Ток отстает от напряжения на величину, которую принято обозначать как cos φ. Чем выше его значение, тем экономичнее прибор, и наоборот, при понижении этой величины энергоэффективность снижается.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

На рисунке показан график изменения тока и напряжения на люминесцентной лампе и лампе накаливания.

Основные виды дросселей

  • Электромагнитный дроссель для лампы, который подключается последовательно с лампой и в схеме необходимо наличие стартера.
  • К его достоинствам можно отнести низкую стоимость, простоту конструкции и достаточную надежность.
  • Недостатки: возможность появления шума и мерцания во время работы и при запуске; довольно продолжительный процесс включения; необходимость подключения конденсатора для снижения потерь.
  • Мощность дросселя должна соответствовать мощности лампы.
  • Электронный дроссель, для подключения которого не нужен стартер.

Положительные качества: быстрое включение; обеспечение работы лампы без миганий; компактность, малый вес.

В результате использования этого вида дросселей снижаются мерцания. Пульсаций при запуске лампы не происходит. Снижается вероятность появления шума при работе.

Дроссели можно разделить на две группы по типу сетей, в которых эксплуатируются лампы:

  1. однофазные (для использования в быту) на 220 В;
  2. трехфазные, которые устанавливаются в светильниках, работающих в сетях на 380 В. Это светильники для освещения промышленных предприятий, улиц и объектов сельскохозяйственного профиля.

Все эти виды дросселей также можно разделить по месту их расположения:

  • находящиеся внутри корпуса светильника, который обеспечивает им защиту от неблагоприятных факторов внешней среды и атмосферы;
  • помещенные в специальный кожух. Такое герметичное исполнение позволяет устанавливать эти приборы в осветительных сетях наружного освещения.

Ремонт светильников с перегоревшими дросселями

  1. Светильники с перегоревшими электромагнитными дросселями можно отремонтировать самостоятельно, заменив отказавший элемент другим, например, применяемым в иных вариантах световой аппаратуры.
  2. Например, в настольных светильниках с ЭмПРА можно использовать плату (с элементами, обеспечивающими горение лампы) от энергосберегающей лампы.

  3. Для этого нужно найти экономичную перегоревшую лампочку (той же мощности, что и у ремонтируемой) с сохранившейся в хорошем состоянии электронной «начинкой».

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияПерегоревшая энергосберегающая лампа с электронной начинкой

Далее необходимо отделить от лампы цоколь вместе с платой и извлечь саму плату. При этом запомнить, где находятся выводы на высоковольтный конденсатор, на лампу и на входное напряжение питания 220 В.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияОтделение платы

Все штырьки, расположенные на плате, и конденсатор (на картинке он зеленого цвета) необходимо выпаять.

Он пойдет в нижнюю, пластмассовую часть цоколя настольной лампы.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияСнимаем нижнюю пластину

Для этого снимаем нижнюю пластину в месте, отмеченном на рисунке, и вытаскиваем из вскрытого кожуха находящиеся в нем детали, которые были соединены при помощи латунных трубок с электродами лампы.

Вместо удаленных нами элементов к проводам, идущим на электроды, присоединяем конденсатор, выпаянный с платы, и помещаем во вскрытый кожух. После этого отделенную нами пластину возвращаем на место и приклеиваем клеем.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияПрисоединяем конденсатор
Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияПомещаем во вскрытый кожух

Далее создаем точки соединения штырьковых выводов электродов с проводами, выходящими с преобразующей электронной платы, снятой с энергосберегающей лампы.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияСоздаем точки соединения штырьковых выводов электродов с проводами

  • Для этого провода с коммутирующего разъема припаиваем к контактам платы на выходе (на рисунке они находятся слева).
  • Плату помещаем в защитный корпус.
  • Зачем это нужно сделать?
  • Так как элементы на плате находятся под высоким напряжением, в целях электробезопасности нужно закрыть к ним доступ.
  • Через провода, находящиеся справа на рисунке, в схему подается входное напряжение от сети 220 В.
  • Для подключения используем вилку и розетку.

Включенная лампа

Включаем созданную конструкцию в сеть. Лампа загорается, светильник работает.

Такие и многие другие самоделки позволяют экономить деньги на покупке товаров, взамен вышедших из строя. При наличии некоторого объема знаний и опыта всегда есть возможность сделать нужные изменения и ремонт светильника своими руками.

Источник: https://LampaGid.ru/vidy/lyuminestsentnye/drossel

Дроссель для ламп: схема подключения, принцип работы, замена,

Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.

Для чего нужна пускорегулирующая аппаратура

Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияСхема, поясняющая устройство ЛДС

Перед нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.

Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников.

Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться.

Само же УФ излучение практически полностью поглощается стеклом и люминофором.

Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Стартеры для запуска ДЛС

Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение.  Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.

Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.

Читайте также:  Какой водяной полотенцесушитель лучше: критерии выбора

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

ЭмПРА для ЛДС мощностью 36 Вт

Таким образом, без стартера лампа не запустится, без балласта – сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.

Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.

Схема подключения люминесцентной лампы

Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияСхема подключения одной люминесцентной лампы

Как это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет.

За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты.

За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.

Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.

Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует.

В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя.

Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком  велик.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияНаглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселем

Пару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.

Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.

  • Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения
  • Схема подключения двух люминесцентных ламп к одному дросселю
  • Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.

Собирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.

Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.

Зачем нужен дроссель в схеме

В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.

Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияДроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводом

Почему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим.

Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, “сопротивляется” и не дает это сделать быстро.

Именно за счет такого постоянного перемагничивания ток ограничивается.

Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.

Преимущества и недостатки электромагнитного дросселя

Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:

  1. Относительно невысокую стоимость.
  2. Простоту конструкции.
  3. Долговечность.

Недостатков у этого прибора, увы, немного больше. Это:

  1. Большие массогабаритные показатели.
  2. Мерцание лампы с удвоенной частотой питающей сети.
  3. Гудение.
  4. Низкий КПД из-за большого индуктивного сопротивления.
  5. При отрицательных напряжениях может не запустить лампу.
  6. Долгий запуск (от 1 до 3 сек.).
  7. При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.

Можно ли обойтись без него

Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

ЭПРА для люминесцентных ламп

Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:

  1. Имеет небольшие массогабариты.
  2. Не гудит.
  3. Не вызывает мерцания лампы с частотой сети.
  4. Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
  5. Запускает ЛДС практически мгновенно.

Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.

Типовые неисправности — замыкание, перегрев, обрыв

А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:

  1. Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
  2. Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
  3. Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.

Как проверить электромагнитный дроссель

Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияСхема проверки дросселя

Важно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).

Итак, собираем схему, включаем. В результате видим:

  1. Лампа не горит. В балласте обрыв.
  2. Горит на полную яркость. Замыкание.
  3. Моргает или горит вполнакала. Балласт, возможно, исправен.

Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.

Возможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений.

Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».

Вот и подошла к концу беседа об электромагнитных дросселях.

Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.

ПредыдущаяСледующая

Источник: https://LampaExpert.ru/vidy-i-tipy-lamp/lyuminestsentnaya/drossel-dla-lamp

Подробно о дросселе для люминесцентных ламп

Конструкция люминесцентной лампы такова, что без пускорегулирующего устройства будет очень сложно организовать ее работу. Для этого раньше использовался электромагнитный балласт или ЭмПРА (его основной элемент – дроссель), а сегодня на его смену пришел более совершенный вариант – электронный пускорегулирующий аппарат (ЭПРА). Несмотря на это, сегодня все еще в ходу оба вида приборов.

Где еще применяется?

Дроссель используется все реже, быть может, со временем он выйдет из употребления за ненадобностью. Ведь подключение газоразрядной лампы таким способом является основной сферой применения данного прибора.

Дроссель играет решающую роль в работе люминесцентной лампы, так как создает приемлемые условия для работы осветительного прибора данного вида: сдерживает возрастающий ток на определенном уровне, что позволяет поддерживать достаточное значение напряжения на электродах в колбе.

Эта особенность переводит дроссель в разряд балласта. Кроме того, схема подключения люминесцентной лампы содержит еще один элемент – стартер. Он ответственен за размыкание цепи.

Это приводит к возникновению ЭДС самоиндукции в дросселе, что, в свою очередь, способствует повышению напряжения до уровня 700-1000В. Результатом данных процессов является пробой и включение люминесцентной лампы.

Принцип работы и обзор видов

Устройство дросселя для газоразрядных ламп довольно простое: по сути, это катушка индуктивности с ферромагнитным сердечником.

Такой прибор используется, только если схема предусматривает подключение лампы с помощью электромагнитного пускорегулирующего аппарата.

Электронный ПРА содержит в своей конструкции стабилизатор и преобразователь частоты, эти элементы позволяют зажечь свет, так как реализуют функции дросселя и стартера.

Чтобы ответить на вопрос, зачем нужен дроссель, рекомендуется сначала понять принцип его работы. При включении в цепь происходит сдвиг фаз между основными электрическими параметрами: напряжением и током.

Это отставание определяется такой характеристикой, как cosφ (коэффициент мощности). При определении расчетного значения активной составляющей нагрузки учитывается данная величина. Если показатель коэффициента мощности небольшой, возрастает уровень нагрузки.

Поэтому в схему включают еще и конденсатор с компенсационной функцией.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияИспользуя данный элемент (3-5 мкФ) при подключении люминесцентных ламп, мощность которых достигает 36 Вт, можно добиться увеличения cosφ до 0,85. Минимальный предел мощности люминесцентных ламп в данном случае – 18 W. Емкость конденсатора для источников света 18 W и 36 W может быть одинаковой. Уровень выдерживаемой дросселем нагрузки должен соответствовать мощности источника света.

Различают несколько исполнений таких приборов, каждое из которых отличается по величине потери мощности:

  • D (обычный);
  • В (пониженный);
  • С (самый низкий).
Читайте также:  Пошаговое руководство по замене труб в ванной комнате

Принцип действия дросселя предполагает расход части мощности не по прямому назначению, а на нагрев прибора. Полезная работа при этом не выполняется, а значит, уровень потерь определяет эффективность функционирования: чем выше эта величина, тем больше греется дроссель для подключения люминесцентной лампы.

Основные плюсы

Несмотря на то, что сегодня популярность ЭмПРА заметно снизилась, такие приборы все равно используются. Это обусловлено рядом преимуществ:

  • обеспечение безопасной работы люминесцентной лампы, для чего нужен еще и стартер;
  • возможность сдерживать ток на определенном уровне;
  • частичная стабилизация светового потока, но принцип работы ЭмПРА таков, что полностью убрать мерцание газоразрядных ламп невозможно;
  • доступная цена.

Именно благодаря последнему фактору из вышеназванных, пускорегулирующее устройство электромагнитного типа с дросселем сегодня еще используется. Кроме того, эти приборы отличаются простотой монтажа и несложной эксплуатацией.

Если есть проблемы в работе ламп, подключенных через дроссель (например, они не включаются), проверяется схема на предмет ошибок и качество соединения (подключение, обрывы проводов).

В случае, когда видимых причин нет, следует проверить исправность дросселя. Сделать это можно, подключив рабочую лампу накаливания. При обрыве источник света не горит, при витковом замыкании – светит в полную силу. Нормальный режим работы – вполнакала.

Варианты включения люминесцентных источников света

Схема подключения ламп данного вида через стартер и дроссель выглядит следующим образом:

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Схема подключения к питанию

Можно выбрать вариант с компенсационным конденсатором или без него, все зависит от коэффициента мощности. От того, какой тип стартера используется, будет зависеть количество подключаемых последовательно ламп:

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Принято считать, что без ПРА невозможно включить газоразрядный осветительный прибор. Это не совсем так. Если изменить схему, то бездроссельное подключение выполнить вполне реально.

Чтобы обеспечить нормальные условия работы люминесцентного источника света, напряжение сети должно быть удвоенным и выпрямленным, для чего в схему вводится выпрямитель.

А вместо балласта используется миниатюрная лампа накаливания, резистор или конденсатор для этой цели не подходит.

Непосредственно, схема подключения через источник света с нитью накаливания и выпрямителем:

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Таким образом, газоразрядные лампы, в частности, люминесцентные исполнения, будут работать, если предусмотреть для них пускорегулирующее устройство. В зависимости от его типа (электронный или электромагнитный вариант) можно обеспечить разный уровень эффективности освещения. ЭмПРА включает в себя дроссель и стартер.

Первый из элементов создает нормальные условия для функционирования источника света (сдерживает рабочий ток на определенном уровне), поэтому считается, что без него освещение работать не будет. Но альтернатива есть – схема питания без дросселя, но с удвоенным напряжением источника питания.

(1

Источник: http://ProOsveschenie.ru/proizvodstvennye-pomeshheniya/podrobno-o-vybore-drosselya-dlya-lyuminescentnykh-lamp.html

Какое значение имеет дроссель в люминесцентных лампах

Дроссель для люминесцентных ламп – это обязательное устройство для нормального функционирования осветительного прибора. Разобравшись в принципе работы такого приспособления можно правильно подключить светильник к электрической цепи самостоятельно.

Для чего нужен?

Люминесцентная лампа не может работать по принципу простой лампы накаливания. Чтобы обеспечить ее функционирование необходимо дополнительное устройство, которое способно создать импульс для электрического пробоя наполненной газом среды. Таким элементом является дроссель. Он поддерживает требуемую мощность в процессе работы светильника.

Чтобы задействовать люминесцентную лампочку необходимо не только обеспечение доступа тока, а и подача напряжения к ней. Для этого подключают дроссель, который ограничивает нарастание движения электрического заряда при подключении к электросети.

Основными функциями ограничивающего ток устройства являются:

  • обеспечение беспрерывной работы лампы независимо от возникающих в электрической сети отклонений напряжения;
  • организация подачи оптимального и безопасного для конкретного светильника тока, способствующего быстрому разогреву при зажигании электродов;
  • стабилизация разрядов тока при номинальных показателях.

С помощью дросселя в люминесцентной колбе происходит формирование разряда за счет образования в обмотке импульса повышенного напряжения.

Принцип работы

Дроссель функционирует в лампе вместе со стартером. Принцип их действия имеет такую последовательность:

  • при возникновении напряжения в лампе электрические заряды поступают в стартер, который состоит из заполненного инертным газом баллона с контактами и конденсатора;
  • за счет напряжения газ ионизируется и по цепи дросселя проходит ток;
  • происходит возрастание силы тока до 0,5 Ампер за счет разогрева контактов из биметалла и газа;
  • далее происходит нагревание катодов, и освобождаются электроды, подогревая в трубке светильника ртутные пары;
  • ионизация завершается при мгновенном замыкании контактов завершение ионизации происходит при мгновенном замыкании контактов;
  • при понижении температуры стартера осуществляется их быстрое размыкание и прекращение подачи тока к катоду и стартеру.

Заряд, сформировавшийся в ртутных парах, обеспечивает ультрафиолетовое излучение, под воздействием которого возникает освещение видимое человеком.

Технические характеристики

Приобретая дроссель нужно внимательно изучать технические характеристики устройства. Он должен соответствовать параметрам газоразрядного осветительного прибора. Существенную роль играет индуктивность дросселя. Такая величина обозначает индуктивное сопротивление устройства, способствующее регулировке поступающего к светильнику электричества.

Немаловажной величиной является коэффициент потери мощности при поддержке необходимых параметров эклектического питания лампы. Также имеет значение качество изделия.

В основном технические данные отличаются в зависимости от мощности дросселя. Согласно такому значению приспособление делят на три группы – «B», «D» и «C». Некоторые электронные модели имеют показатели климатических условий использования.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияЭлектромагнитный дроссель для люминесцентных ламп

Виды

Дроссели бывают двух видов:

  1. Электронный. Такое приспособление работает без подключения стартера. Основными его достоинствами считаются – высокая скорость включения, небольшие габариты и вес изделия, а также способность обеспечить равномерное свечение лампы без мерцаний. Работает электронный дроссель совершенно бесшумно.
  2. Электромагнитный. Такое устройство для люминесцентных светильников подсоединяется параллельно со стартером. Дроссель электромагнитный имеет несложную конструкцию и надежен в использовании. Такие изделия отличаются невысокой стоимостью. К недостаткам данного приспособления причисляют – длительное включение, наличие характерного шума во время работы, возможность мерцаний при запуске, необходимость установки конденсатора.

Согласно типу сетей, в которые подключаются светильники, дроссели различают:

  • бытовые однофазные устройства – 220 Вольт;
  • трехфазные приспособления для люминесцентных ламп промышленного применения – 380 Вольт.

В некоторых моделях дроссель располагается в специальном кожухе, что позволяет размещать его в светильниках наружного расположения. Многие устройства для обеспечения свечения размещены внутри лампу. Такой вариант позволяет надежно защитить дроссель от влияния различных внешних факторов.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияЭлектронный дроссель для люминесцентных ламп

Устройство и схема

Конструкция дросселя вмещает в себя такие компоненты:

  • сердечник, на который намотана проволока из изолирующего материала;
  • специальная смесь для дополнительной защиты обмоточного провода, изготовлена из устойчивых к возгоранию веществ;
  • термоустойчивый корпус для размещения намотки.

Стандартная схема подключения со стартером – это наиболее простой и распространенный вариант подключения люминесцентных ламп. Несмотря на некоторые недостатки, такое подсоединения имеет хорошие показатели.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияСтандартная схема подключения люминесцентных ламп

Подключение

Чтобы подключить дроссель по схеме со стартером следует выполнить несколько простых действий:

  • подсоединить стартер к контактам, которые находятся по бокам на выходе осветительного прибора;
  • на свободные выводы подключить дроссель;
  • конденсатор соединить с питающими контактами.

Подключение всех элементов проводится параллельно. За счет конденсатора можно значительно уменьшить сетевые помехи.

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключенияПодключение электромагнитного дросселя к люминесцентной лампе

Как проверить исправность?

Дроссель является достаточно прочным и надежным составным элементом люминесцентной лампы. Поэтому выходит из строя устройство очень редко.

Но все же иногда может возникать обрыв его обмотки или перегорание. Также при нарушении изоляционного слоя между витками дроссель перестает функционировать. Как определить исправность дросселя?

Проверка проводится мультиметром. Прибор, настроенный на величину сопротивления подключают к выводам дросселя. При нарушениях в обмотке на измерительном приборе высвечивается бесконечное сопротивление. Минимальные показатели этого значения свидетельствуют о непригодности изоляции или замыкании между витками.

При перегорании обмотки в катушке ощущается характерный паленый запах, который изначально исходит от детали в процессе ее работы. Все описанные характеристики неисправности дросселя в основном относятся к устройствам электромагнитного типа.

Как заменить?

Иногда при выходе дросселя из строя его начинают ремонтировать. Для этого требуются особые знания и навыки. Чаще всего деталь заменяется. Установку нового дросселя может сделать каждый:

  • полностью отключить подачу электроэнергии в доме;
  • снять дроссель;
  • разъединить крепежи и провода, проводящие к светильнику ток;
  • подключить к ним новый дроссель, вставляя на место старого.

Выполнять замену нельзя при простом отключении лампы, так как напряжение от этого не исчезнет.

Дроссель в люминесцентной лампе – это простой, но необходимый для создания свечения элемент. Имея представление о работе такого устройства можно подключать светильник и заменять в нем нерабочие детали без помощи специалиста.

Источник: https://master-houses.ru/drossel-v-lyuminestsentnyh-lampah-05/

Как работает дроссель для люминесцентных ламп — Строительство и ремонт

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе.

 Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике.

 Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.

Конструкция и принцип работы

Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:

Внешний вид изделия может быть таким, как на фото:

Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.

Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике.

Читайте также:  Индукционный котел отопления своими руками: как соорудить самодельный агрегат

Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление.

Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.

Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.

Интересное пояснение по данному вопросу вы также можете просмотреть на видео:

Наглядное сравнение, объясняющее принцип работыТеоретическая часть вопроса

Область применения

Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.

Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:

Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь.

В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение.

Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.

В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.

Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.

В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.

В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.

С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.

Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.

Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!

Будет интересно прочитать:

Источник: https://samelectrik.ru/chto-takoe-drossel.html

Дроссель для люминесцентных ламп: схема подключения

Несмотря на повышение спроса на светодиодные источники света, люминесцентные лампы все еще остаются на пике популярности. Во многом это объясняется относительно небольшой стоимостью осветительного устройства и пускорегулирующего аппарата (далее ПРА), необходимого для его работы. Рассмотрим функциональное назначение и принцип работы последних.

Основные функции

Люминесцентные источники света не представляется возможным напрямую включить в электрическую сеть. На это имеются следующие причины:

  • чтобы создать стойкий разряд в лампе люминесцентного типа, необходимо предварительно разогреть ее электроды и подать на них стартовый импульс;
  • поскольку источники света газоразрядного типа обладают отрицательным дифференциальным сопротивлением, для них характерно после выхода в рабочий режим возрастание силы тока. Его необходимо ограничивать, чтобы не допустить выхода источника света из строя.

Исходя из описанных выше причин, необходимо использовать  ПРА.

ПРА электромагнитного типа

Принцип работы

  • Рассмотрим принцип работы электромагнитного дросселя на примере типичной схемы подключения для ламп газоразрядного типа .
  • Типичная схема подключения
  • На схеме обозначены:
  • EL – лампа газоразрядного (люминесцентного) типа;
  • SF – стартер, он представляет собой устройство состоящее из колбы, наполненной инертным газом, внутри нее находятся контакты из биметалла. Параллельно к колбе установлен конденсатор;
  • LL –дроссель (электромагнитный);
  • спирали лампы (1 и 2);
  • C – конденсатор (компенсирует реактивную мощность), его емкость зависит от мощности лампы, ниже показана таблица соответствия.
Мощность газоразрядного источника (Вт) Емкость конденсатора (мкФ)
15 4,50
18 4,50
30 4,50
36 4,50
58 7,00

Встречаются устройства, в схемах которых отсутствует компенсирующий конденсатор,  это недопустимо, поскольку реактивная нагрузка приводит к следующим негативным последствиям:

  • происходит увеличение потребляемой мощности, что приводит к повышенному расходу электроэнергии;
  • существенно сокращается ресурс оборудования.

Теперь перейдем непосредственно к принципу работы, приведенной выше типовой схемы. Условно ее можно разделить на следующие этапы:

  • при подключении к электросети, через цепь дроссель «LL» – спираль « 1» – стартер «SF» – спираль «2» начинает проходить ток, сила которого от 40 до 50 мА;
  • под воздействием этого процесса в колбе стартера ионизируется инертный газ, что приводит к повышению силы тока и разогреву биметаллических контактов;
  • нагревшиеся электроды в стартере замыкаются, это вызывает резкое повышение силы тока, примерно до 600 мА. Дальнейший его рост ограничивает индуктивность дросселя;
  • за счет увеличившейся силы тока в цепи происходит разогрев спиралей (1 и 2), в результате чего ими излучаются электроны, разогревается газовая смесь, что приводит к разряду ;
  • под воздействием разряда возникает ультрафиолетовое излучение, которое попадает на покрытие из люминофора. В результате он светится в видимом спектре;
  • когда источник света «зажигается», его сопротивление уменьшается, соответственно, понижается напряжение на дросселе (до 110 В);
  • контакты стартера остывают и размыкаются.

Тандемное подключение

  1. Ниже показана схема, где две лампы люминесцентного типа включены последовательно.
  2. Схема тандемного подключения

Принцип работы у представленной схемы не отличается от типового подключения, единственная разница – в параметрах стартеров. При двухламповом подключении применяются стартеры, у которых «пробивное» напряжение 110 В (тип S2), для однолампового – 220 В (тип S10).

Стартеры S10 и S2 на 220 и 110 В соответственно

Особенности дросселей электромагнитного типа

Говоря об особенностях электромагнитных ПРА, необходимо заметить, что единственные преимущества этих устройств – относительно невысокая цена, простая эксплуатация и несложный монтаж. Недостатков у классической схемы подключения значительно больше:

  • наличие громоздкого и «шумного» дросселя;
  • стартеры, к сожалению, не отличаются надежностью;
  • наличие эффекта стробирования (лампа мерцает с частотой 50 Гц) вызывает повышенную утомляемость у человека, что приводит к снижению его работоспособности;
  • при вышедших из строя стартерах проявляется фальстарт, то есть лампа, перед тем как «зажечься», несколько раз мигает, это снижает рабочий ресурс источника света;
  • примерно около 25% мощности расходуется на электромагнитный балласт, в результате существенно снижается КПД.

  Какие лампы содержат ртуть

Использование электронного ПРА позволяет избавиться от большинства из перечисленных выше недостатков.

Пускорегулирующий аппарат электронного типа (ЭПРА)

Массово ЭПРА появились  не так давно, около тридцати лет назад, в настоящее время они практически вытеснили электромагнитные устройства. Этому способствовали многочисленные преимущества перед классической схемой включения, назовем основные из них:

  • повышение световой отдачи ламп люминесцентного типа благодаря высокочастотному разряду;
  • отсутствие шума, характерного для низкочастотных электромагнитных дросселей;
  • снижение эффекта стробирования значительно расширило сферу применения;
  • отсутствие фальстарта увеличивает срок эксплуатации люминесцентных источников;
  • КПД может достигать 97%;
  • по сравнению с ПРА электромагнитного типа, энергопотребление снижено на 30%;
  • нет необходимости компенсировать реактивную нагрузку;
  • в некоторых моделях электронных устройств предусмотрено управление мощностью источника освещения, это производится регулировкой частоты в преобразователе напряжения.

ЭПЛА внешний вид и внутренне устройство

Стоит также отметить: благодаря отсутствию громоздкого дросселя, стало возможным уменьшить размеры электронного балласта, что позволило  разместить его в цоколе. Это существенно расширяет сферу применения, делая возможным использование в осветительных приборах вместо источников, в которых используется нить накала.

  • ЭПРА, размещенный в цоколе
  • В качестве примера приведем схему простого электронного балласта, типичную для большинства недорогих устройств.
  • Схема типичного ЭПРА
  • Перечень элементов:
  • номиналы резисторов: R1 и R2 -15 Ом, R3 и R4 – 2,2 Ом, R5 – 620 кОм, R6 – 1,6 Мом;
  • используемые конденсаторы: C1 – 47 нФ 400 В, С2 – 6800 пФ 1200 В,  С3 – 2200пФ, С4 – 22 нФ, С5 – 4,7 мкФ 350 В;
  • диоды: VD1-VD7 – 1N400;
  • транзисторы: Т1 и Т2 – 13003;
  • диодный симистор VS – DB3.

Завершая тему ЭПРА, необходимо заметить – их существенным недостатком является относительно высокая стоимость качественных устройств. Что касается недорогих моделей, надежность таковых оставляет желать лучшего.

Подключение без балласта

При необходимости газоразрядные источники света возможно включить в сеть питания без электромагнитного или электронного балласта. Схема такого включения показана ниже.

Бездроссельный способ подключения

Для реализации такого подключения понадобится:

  • лампа люминесцентного типа – 40 Вт и накаливания – 60 Вт (последняя будет работать как балластное сопротивление);
  • два конденсатора 0,47 мкФ 400 В (играют роль умножителя);
  • диодный мост КЦ404А или аналогичный, можно использовать четыре диода, рассчитанных под ток не менее 1 А и обратное импульсное напряжение 600 В.

Данная схема проигрывает по своим параметрам подключению при помощи электромагнитного дросселя и ЭПРА. Она приведена для ознакомления.

Обсудить на форуме ОЦЕНИТЬ: (2 3,00

Источник: https://newcomfortart.com/kak-rabotaet-drossel-dlya-lyuminestsentnyh-lamp/

Ссылка на основную публикацию