Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии.

В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию.

Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца.

В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный.

Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века.

Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций.

Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины.

Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение.

Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Недостатки:

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час.

В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Видео

Как устроена солнечная батарея, расскажет наше видео.

Источник: https://solar-energ.ru/kak-rabotayut-solnechnye-batarei-printsip-ustrojstvo-materialy.html

Расчёт солнечных батарей

Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр. В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека. Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество. А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии.

Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше.

В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать. При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера.

Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов. Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц.

Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность. И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%. Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц.

А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

Читайте также:  Краска для газовых труб: чем лучше покрасить газовую трубу в квартире и на улице

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%.

Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%.

По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД.

Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%.

Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись.

PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности.

А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч.

Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц «нагорит» 9кВт*ч.

Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра. Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр.

Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт. Получается нужен массив батарей мощностью 0,5кВт.

Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно
  • Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт.

    Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт.

    Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей. Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны. Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник: http://e-veterok.ru/095-solnehnye-batarei-vraschyot.php

    Расчет солнечной батареи и аккумуляторов, комплекта солнечной электростанции

    Очень часто при обращении за подбором оборудования или при выборе солнечной электростанции клиенты задают вопрос: Как рассчитать мощность и количество солнечных батарей и аккумуляторов и какой мощности выбрать солнечную электростанцию. В этой статье мы попробуем разобраться с этим вопросом, и я постараюсь простым языком, без углубления в детали объяснить как это сделать.

    В первую очередь нужно узнать сколько электроэнергии вы потребляете в сутки, это можно сделать взяв средние ежемесячные показания счетчика электроэнергии и разделить на 30 дней.

    Так мы получим среднее потребление в сутки. Например соц норма в РО на двух чел составляет 234кВт, что около 8кВт электроэнергии в сутки.

    Соответственно нам необходимо чтобы солнечные батареи вырабатывали такое же количество энергии в день.

    Расчет количества солнечных батарей и их мощности

    Так как солнечные панели вырабатывают электрическую энергию только в светлое время суток, то это необходимо учесть в первую очередь, так же стоит понимать, что выработка в пасмурные дни и зимой очень сильно снижается, и может составлять 10-30 процентов от мощности панелей.

    Для простоты и удобства мы будем делать расчет с апреля по октябрь, по времени суток основная выработка идет с 9 до 17 часов, т.е. 7-8 часов в день.

    В летнее время интервалы конечно будут больше, с восхода до заката, но в эти часы выработка будет значительно меньше номинала, поэтому мы усредняем.

    Итак 4 солнечные батареи мощностью 250Вт. (всего 1000Вт). За день выработают 8кВт энергии, т.е. в месяц это 240кВт.

    Но это идеальный расчет, как мы говорили выше, в пасмурные дни выработка будет меньше, поэтому можно лучше взять 70% от выработки, 240 * 0,7 = 168 кВт. Это усредненный расчет без потерь в инверторе и аккумуляторных батареях.

    Так же это значение можно применить для рассчета сетевой солнечной электростанции где не используются аккумуляторные батареи.

    Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

    Расчет аккумуляторов для солнечной электростанции

    Далее перейдем к расчёту ёмкости аккумуляторной батареи для солнечных панелей. Их количестов и емкость должна быть такой, чтобы энергии которая в них запасается хватило на темное время суток, стоит учесть что ночью потребление электроэнергии минимально, по сравнению с дневной активностью.

    Аккумулятор на 100А.ч. запасает примерно 100А * 12В = 1200Вт. (лампочка на 100Вт. проработает от такого акб 12 часов). Так если за ночь вы потребляете 2,4кВт.ч. электричества, то вам необходимо установить 2 АКБ по 100А.ч.

    (12В), но тут стоит учитывать что аккумуляторы нежелательно разряжать на 100%, а лучше не более 70%-50%. Исходя из этого получаем, что 2 АКБ по 100А.ч. будут запасать 2400 * 0,7 = 1700Вт.

    Это верно при разряде не большими токами, при подключении мощных потребителей происходит просадка напряжения и емкость по факту уменьшается.

    Если вы хотите рассчитать, какая емкость аккумулятора нужна к солнечной батари, ниже приводим таблицу соответствия (для системы 12В.):

    •  Солнечная батарея 50Вт. — АКБ 20-40А.ч.
    •  100Вт. — 50-70А.ч.
    •  150Вт. — 70-100А.ч.
    •  200Вт. — 100-130А.ч.
    •  300Вт. — 150-250А.ч.

    Солнечные батареи для дома и дачи: виды, устройство, принцип работы, расчет количества

    Мощность инвертора и потери в нем

    Теперь что касается инвертора, он тоже имеет свой КПД а это порядка 75-90%, т.е. все полученные величины выработки энергии и запаса можно относить к этим процентам.

    В итоге лучше брать двойной запас емкости для аккумуляторов, Так при потреблении 2400Вт за ночь, устанавливать 4 АКБ емкостью 100А.ч. 100А*12В*4 = 4800Вт.

    Мощность инвертора показывает номинальную нагрузку которую можно подключить к нему, т.е количество и тип бытовых приборов.

    В Итоге получаем солнечную электростанцию на 2,5кВт:

    1. Солнечные батареи 4шт. по 250Вт. Выработка в месяц 170 -240кВт. (36тыс.руб.)
    2. АКБ по 100А.ч. 4 шт. запас до 4800 Вт. (AGM аккумуляторы 50тыс.руб.)
    3. Инвертор 2,4кВт номинальная мощность подключаемого оборудования (27тыс.)

    Итого 113 тыс. руб. за комплект оборудования.

    Мощность бытовых приборов, потребление электроэнергии

    Теперь что касается потребителей и их мощности, приведем основные из них:

    • Телевизор Led – 50-150Вт.
    • Холодильник класса А – 100-300Вт. (только во время работы компрессора)
    • Ноутбук – 20-50Вт
    • Лампа энергосберегающая – 30Вт, Светодиодная 3-9Вт
    • Котел настенный (электроника + встроенный насос) – 70-130Вт.
    • Роутер – 10-20Вт.
    • Кондиционер 9 – 700-900Вт.
    • Эл. Чайник – 1500Вт.
    • Микроволновка – 500-700Вт.
    • Стиральная машина – 600 – 900Вт.
    • Видеорегистратор + 4 камеры – 30-50Вт.

    Все мощности указаны в час работы прибора, стоит учитывать, что большинство приборов работают непродолжительное время, чайник подогрев – 5мин, холодильник включается раз в 2-3 часа на час для поддержания темп. Насос котла тоже работает по мере поддержания температуры теплоносителя. Так же можно рассчитать и другие приборы по этому принципу.

    Читайте также:  Что делать, если отрезали газ в частном доме: обзор правовой стороны вопроса

    Видео на тему расчета солнечной электростанции..

    Источник: https://enpartner.ru/novosti/raschet-solnechnoj-batarei-i-akkumulyatora-solnechnoj-elektrostantsii

    Пример расчета мощности и количества солнечных батарей для дома: формула и цены

    Регионы: Москва, Новосибирск, Краснодар.

    Установка гелиопанелей для энергопитания дома требует тщательного предварительного расчета. Возможности подобного оборудования ограничены и в значительной степени зависят от внешних условий:

    • географическое положение региона
    • климатические и погодные условия
    • продолжительность светового дня

    Производительность комплекса всегда зависит от внешних условий.

    Один и тот же набор оборудования в разных условиях демонстрирует отличающиеся друг от друга результаты, поэтому в каждом случае потребуется специализированный расчет.

    Его можно заказать в специализированных организациях или выполнить самостоятельно. Рассмотрим, как рассчитать солнечные батареи для дома, чтобы получить эффективную установку по производству электроэнергии.

    Потребности в электроэнергии

    Расчет солнечных батарей для дачи или частного дома надо начинать с определения потребностей в электроэнергии. Эту величину можно узнать из показаний счетчика электроэнергии или подсчитать по энергопотреблению каждого потребителя и времени его использования. Второй вариант гораздо сложнее и чреват возникновением ошибок, поэтому правильнее руководствоваться показаниями счетчика.

    Количество солнечных дней

    Вторым действием станет определение количества солнечных дней в регионе, продолжительности светового дня по сезонам.

    В приложениях СНиП есть карта инсоляции регионов России, в которой дается количество солнечной энергии в разных участках страны.

    По ней определяется среднегодовое количество доступной энергии для заданного города или региона. Это важный показатель, демонстрирующий верхний предел возможностей оборудования в данном месте.

    Определив эти значения можно начинать расчет мощности солнечных батарей для дома.

    Расчет мощности солнечных батарей

    Начиная расчет солнечной батареи, следует учесть, что световой день — это показатель преимущественно географический. Выполняя расчет солнечных панелей для дома, надо исходить из реального производства энергии, которое в утренние и вечерние часы значительно падает из-за снижения интенсивности свечения солнца.

    Обычно в летнее время максимальная производительность панелей отмечается в период с 9 до 16 часов, а в остальное светлое время суток они выдают 20-30 % своей мощности.

    Кроме того, существенные коррективы вносят погодные условия, которые способны снизить выработку энергии вдвое или больше.

    Поэтому реальную производительность солнечной батареи следует принимать максимум в половину указанной в паспорте и рассчитывать количество энергии на 70 % продолжительности светового дня.

    Специалисты рекомендуют вообще не учитывать в расчетах утренние и вечерние часы, отнеся их к необходимому запасу прочности системы. Кроме того, необходимо учитывать самые неблагоприятные условия и прибавлять к ним некоторый процент воздействия отрицательных факторов.

    Это не будет излишним, поскольку всегда оказываются неучтенными некоторые детали, значительно меняющие условия работы и требуемую мощность солнечных батарей на квадратный метр.

    Формула

    Формула расчета солнечных панелей выглядит следующим образом:

    Pсп=Eп*k* Pинс / Eинс,

    • где Pсп — мощность солнечной панели
    • Eп — суточное количество энергии, необходимой для питания всех потребителей дома
    • K — коэффициент потерь, обычно равен 1,2-1,4
    • Pинс — мощность инсоляции на земной поверхности
    • Eинс — табличное значение среднемесячной инсоляции в данном регионе

    Используя эту формулу, находят требуемую мощность солнечной батареи на 1 кв. метр. По мощности определяется, сколько солнечных батарей нужно для частного дома, расчет количества панелей производится путем деления общего значения на параметры одного элемента.

    Расчет ёмкости аккумуляторной батареи для солнечных панелей

    Емкость аккумуляторов должна соответствовать производительности солнечных панелей и обеспечивать потребление дома как в светлое, так и в темное время суток. Необходимо ограничить емкость батарей, чтобы не тратить лишние деньги. Однако, необходимо иметь определенный запас емкости, поскольку полностью разряжать аккумуляторы нельзя.

    Величина допустимого разряда у каждого вида АКБ своя, например, заряд автомобильных батарей можно расходовать только до 50 %. Оптимальный вариант — наличие суточного запаса энергии. Больше иметь нецелесообразно, так как это сильно увеличит стоимость системы. Меньший запас может оставить жителей дома без электроэнергии при возникновении неблагоприятных внешних условий.

    Кроме того, надо учесть КПД батарей, инвертора и возможность плохого функционирования солнечных панелей из-за плохой погоды, занесения поверхности фотоэлементов снегом и т.п. Эти потери принято оценивать в 40 %, но к ним надо еще прибавить КПД контроллера.

    Это важно, так как некоторые модели практически не воздействуют на процесс передачи энергии, но более дешевые модели способны снизить передачу на 20 %.

    Расчет и выбор инвертора

    Расчет солнечной электростанции завершается выбором мощности инвертора. Это устройство, преобразующее постоянный ток от аккумуляторных батарей, в переменное напряжение со стандартными параметрами 220 В 50 Гц.

    Простейший вариант расчета мощности инвертора — определение суточной потребности жилища в электроэнергии (по показаниям счетчика), которому и должен соответствовать инвертор. Для учета возможных форс-мажорных ситуаций считают пиковую нагрузку, умножая суточное потребление на коэффициент 1,3.

    Есть другой вариант расчета инвертора — по производительности солнечных панелей и емкости аккумуляторов.

    Он привязывает результат к имеющемуся оборудованию, но оно изначально так же рассчитывалось по суточному потреблению энергии, поэтому оба варианта практически равноценны.

    На этом расчет солнечной электростанции для дома можно считать завершенным и переходить к непосредственному созданию комплекта.

    Выбор готового инвертора, как и в случае с аккумуляторами, производится путем подбора устройства по полученным данным. Рекомендуется выбирать инвертор, обладающий несколько увеличенными показателями на 10-15 %, чтобы компенсировать падение производительности со временем.

    Стоимость солнечных батарей и аккумуляторов

    Цены панелей и аккумуляторов имеют широкий диапазон, обусловленный множеством вариантов конструкции, мощности и прочих параметров. Однако, рассчитывать расходы следует только по расчетному составу солнечной электростанции, включающему в себя вполне определенные виды оборудования.

    Внимание! Приобретение аппаратуры по отдельности нецелесообразно, поскольку в результате можно получить разнородное оборудование, не способное работать в связке. Правильнее приобретать готовые комплексы, составленные из полностью совместимого оборудования.

    Начальная стоимость станции составляет 5 тыс. руб. и увеличивается пропорционально мощности, емкости АКБ и прочим возможностям комплекса. Верхнего предела практически не существует, так как количество солнечных панелей может быть бесконечно.

    Цены на оборудование

    Источник: https://Energo.house/sol/raschet-solnechnyh-batarej.html

    Как рассчитать солнечную электростанцию и выбрать оборудование для нее?

    Как рассчитать солнечную электростанцию и выбрать оборудование для нее? Очень просто!

    Расчет небольших солнечных электростанций можно сделать достаточно просто вооружившись листом бумаги и ручкой. В этой статье мы расскажем основные принципы подбора оборудования для бытовых солнечных электростанций.

    ВАЖНО:  комплектация солнечной системы никак не связана с площадью дома. Она зависит только от мощности подключаемого оборудования и количества потребляемой энергии.

    • Основными элементами солнечной электростанции являются:
    • ·         Солнечные панели – они генерируют электроэнергию, и чем они мощнее и их больше, тем больше электроэнергии можно получить в течении дня.
    • ·         Аккумуляторные батареи – в них происходит накопление элеткроэнергии, которую можно использовать в отсутствии солнца (ночью), когда выработки электричества на солнечных панелях нет.

    ·         Контроллер заряда аккумулятора – это устройство, которое позволяет обеспечить правильные режимы заряда аккумулятора. Выбор этого устройства, как правило, чисто технический момент за исключением выбора типа контроллера MPPT или ШИМ. Иногда контроллер заряда может быть встроен в инвертор.

    ·         Инвертор преобразователь напряжения – это устройство преобразует постоянный ток на аккумуляторах в переменный 220В, который используется во всех бытовых электроприборах. Мощность инвертора ограничивает максимальную мощность электропотребителей, которые могут быть подключены к системе.

    Теперь подробно остановимся на каждом из этих элементов системы, для того, чтобы понять, какое именно оборудование и в каком количестве, нам потребуется.

    Как выбрать инвертор – преобразователь напряжения

    Подбор оборудования для системы начинается с выбора инвертора. Все инверторы делятся на 2 группы по форме выходного сигнала – чистый синус (форма сигнала в виде синусоиды) и модифицированный синус (форма сигнала в виде ступенек или трапеций).

    Если к системе будет подключаться любая индуктивная нагрузка: двигатели , компрессоры и т.д. то инвертор должен быть обязательно с чистым синусом на выходе. Т.е. если вы планируете подключать холодильник, насос, электроинструмент и т.д.

    то инвертор должен на выходе выдавать чистую синусоиду.

    Если же подключаемая нагрузка это телевизоры, зарядные устройства, освещение и т.д. то модифицированный синус вполне подойдет.

    Таким образом чистый синус имеет более широкую область применения, но и цена у него существенно дороже чем у инверторов с модифицированным синусом.

    Итак, мы определили тип инвертора, который нам нужен, далее нужно определить его номинальную мощность. Для того, чтобы это сделать, нужно просуммировать мощность всех электроприборов которые могут быть включены одновременно. Мощность каждого прибора можно найти в инструкции или на самом устройстве.

    Например: холодильник (300Вт) + телевизор (70Вт) + насос (400Вт) + микроволновка (1000Вт) = 300Вт+70Вт+400Вт+1000Вт = 1770Вт. Соответственно в данном случае инвертор должен иметь номинальную мощность более 1770Вт. Кроме того важно понимать, что у некоторых приборов существуют пусковые токи, которые кратковременно появляются при запуске оборудования.

    Эти пусковые токи могут быть в 5-7 раз больше чем номинальные. Это важно учитывать при выборе инвертора. Благо у каждого инвертора есть запас прочности – пиковая нагрузка и зачастую эта характеристика в 2 раза больше номинальной мощности.

    Поэтому в данном примере инвертора номинальной мощностью 2000Вт хватит для обеспечения питанием указанных приборов, даже с учетом того, что у холодильника в момент пуска мощность может быть 300Вт*7=2100Вт.

    Как рассчитать солнечные панели

    Следующий вопрос  — как рассчитать сколько солнечных батарей нужно установить, чтобы их было достаточно для обеспечения нужным количеством электроэнергии.

    Прежде чем ответить на этот вопрос, давайте выясним, сколько же электроэнергии мы потребляем. Это можно сделать умножив мощность электроприборов на время их работы, например: лампочка мощностью 50Вт работая в течении 3х часов, израсходует 50вт*3ч=150Вт*ч электроэнергии.

    Таким образом, можно посчитать полное электропотребление за сутки, но есть и более простой способ – посмотреть показания электросчетчика за месяц и разделить на количество дней в месяце. К примеру: счетчик за месяц (30 дней) накрутил 150кВт*ч электроэнергии. В среднем за сутки получается 5кВт*ч электроэнергии.

     Это значит, что массив солнечных панелей должен за солнечный день успеть сгенерировать такое же количество электроэнергии.

    Солнечные панели бывают различного размера и мощности, и в каждом конкретном случае бывает удобнее использовать панели определенного размера, но, как правило, для средних и больших систем используются панели 250-300Вт, поскольку они наиболее оптимальны с точки зрения монтажа.

    Мощность панели это как раз то количество электроэнергии, которая она вырабатывает при полной освещенности. Т.е. если на солнечную панель 250Вт в течении 3х часов под прямым углом будет светить солнце, то она выработает 250Вт*3ч=750Вт*ч электроэнергии.

    Конечно в течении дня может быть достаточно облачно и мало света, поэтому та же самая панель при облачной погоде может вырабатывать в 3-4 раза меньше электроэнергии чем в солнечную погоду.  Таким образом для грубой оценки такой подход в расчетах может подойти.

     Например если нужна система, которая летом должна вырабатывать 5кВт*ч электроэнергии в день, при условии, что в среднем в течении 4х часов на панель будет светить солнце (4ч*250Вт=1000Вт), то нам понадобится не менее 5 таких панелей.

    Читайте также:  Как подключить выключатель с одной клавишей: схемы как подсоединить

    Для более точного расчета необходимо использовать так называемые таблицы солнечной инсоляции, в которых указаны средние значения солнечной освещенности на 1 кв.м. за сутки в разных регионах нашей страны. К примеру в Астрахани в июне на поверхность наклоненную на 35градусов к горизонту за месяц проникает 197.7 кВт*ч энергии.

    За сутки в среднем получится около 6.6кВт*ч энергии. Конечно, не вся эта энергия будет преобразована в электрическую. У каждого модуля есть КПД (коэффициент полезного действия, не путать с КПД ФЭПа), в среднем это 16.5-17%. Это значит что нужно 6.6 кВт*ч умножить на 17%, в результате чего получим 1.

    12кВт*ч в сутки с одного квадратного метра солнечных панелей. Зная нужное нам количество энергии в сутки, к примеру 5кВт*ч, мы можем определить нужную нам площадь солнечных панелей – 5кВт*ч/1.12кВт*ч=4.46м.кв. Солнечный модуль 250Вт имеет размеры 1650х990мм и площадь равную 1.64м.кв..

    Таким образом 3х модулей по 250Вт будет достаточно для генерации 5кВт*ч электроэнергии в сутки на территории Астрахани в июне.

    По такому принципу делаются профессиональные расчеты систем, поскольку нет более точных данных по работе солнечных панелей, чем статистические.

    Сколько нужно аккумуляторов

    Количество энергии которое может быть запасено в аккумуляторной батарее можно оценить по формуле «емкость умножить на номинальное напряжение». Например аккумулятор емкостью 100Ач и напряжением 12В, может запасти в себе 100Ач*12В=1200Вт*ч электроэнергии.

    Зная, сколько энергии у нас расходуется в сутки, мы можем определить какая часть этой энергии расходуется из аккумуляторов в отсутствии солнца.

    Но поскольку срок службы аккумуляторов на прямую зависит от глубины его разряда, и не рекомендуется разряжать аккумуляторы ниже 50%, мы рекомендуем делать расчет аккумуляторов исходя из суточного потребления, например в сутки потребляется 5кВт*ч, это 5000Вт*ч. Разделив потребление на 12В, получим требуемую емкость банка аккумуляторов 5000Вт*ч/12В=416Ач.

    Т.е. 4 аккумулятора по 100Ач гарантированно не разрядятся полностью в течении дня, что позволит увеличить срок их службы, а также обеспечат необходимым количеством электроэнергии в отсутствии солнца – ночью.

    Как выбрать контроллер заряда аккумулятора и что это такое можно прочитать по адресу: http://oporasolar.ru/articles/11066-kontrollery-zaryada . В этой статье мы не будем останавливаться на данном этапе.

    Зима-Лето

    Зимой солнца сильно меньше чем летом, поэтому если вы хотите полностью автономную систему, то все расчеты необходимо делать основываюсь на минимальных значениях солнечной инсоляции, которые, как правило наблюдаются в декабре-январе.

    Так вы гарантированно обеспечите себе автономное питание в течении года.

    К примеру в той же Астрахани, значение солнечной инсоляции в декабре в 4 раза меньше чем в июне, поэтому для автономной работы системы зимой, потребуется в 4 раза больше солнечных панелей.

    Наличие внешней сети или генератора

    Если у вас есть возможность подключиться к сети или генератору, то это позволит не покупать большое количество солнечных панелей, для обеспечения питанием в зимнее время. При длительном отсутствии солнца можно включить сеть или генератор для зарядки аккумуляторов не небольшой период времени до полной зарядки, и продолжать получать энергию от солнца.

    На сегодняшний день есть большое количество инверторов со встроенным зарядным устройством аккумуляторов, вплоть до автоматического переключения на питание от сети в случае сильного разряда аккумуляторных батарей. Такие инверторы наиболее удобны в использовании и достаточно просты в подключении.

    Таким образом, мы разобрались как можно сделать расчет солнечной электростанции, а если у вас остались вопросы вы можете позвонить нам и мы поможем вам разобраться!

    OporaSolar, Сапожников Д.А.

    Источник: https://oporasolar.ru/a187049-kak-rasschitat-solnechnuyu.html

    Солнечные батареи для дачи и дома: принцип работы и расчет необходимого количества

    Солнечный свет – это набор электромагнитных волн, которые распространяются от звезды в огромном количестве. К сожалению, фотоэлементы, которые ловят это излучение, недостаточно эффективны, и на данный момент на рынке распространены батареи с КПД от 10 до 20%.

    Любая современная гелиоэлектростанция, которую решили устанавливать на загородный дом, работает на принципе P-N перехода. Панель состоит из двух пластин полупроводников, соприкасающихся между собой.

    Когда на верхнюю часть попадает солнечный свет, он передает электронам, содержащимся в материале, часть своей энергии. После этого они начинают путешествие в другой слой, чтобы уравновесить заряды.

    Чтобы создать полноценную панель, два полупроводника соединяют между собой, нанося на верхний тонкие полоски металла, которые облегчают прохождение электронов к аккумулятору, а через него происходит электроснабжение приборов.

    Сбрасывая напряжение в накопители, частицы перемещаются на металлическую пластину основания, а после этого в нижний, темный слой, откуда проталкиваются опять к верхнему.

    Получается замкнутый цикл, движущей силой которого служит солнечный свет.

    Существует несколько направлений солнечных панелей, которые можно использовать в частном доме. По материалам самыми распространенными являются кремневые пластины и полимерные пленки. В каждом способе присутствуют как свои преимущества, так и недостатки, поэтому необходимо рассмотреть каждый вид по отдельности.

    Пластины, содержащие кремень, работают наиболее эффективно, в сравнении с другими известными человечеству фотоэлементами. При попадании солнечных лучей на кремень, энергия, заключенная в них, смещает электроны с орбиты атомов, производя постоянный ток.

    Частицы, двигаясь к накопителю, сбрасывают заряд, возвращаются к атомам, где снова подвергаются бомбардировке энергией. Но производство таких панелей довольно затратное как по средствам, так и по выбросам в окружающую среду.

    Поэтому сейчас в лабораториях идет поиск более экологичных и эффективных способов извлечения энергии из света.

    Характеристика кремневых панелей:

    1. Монокристаллические батареи, имеют самый высокий КПД, которое для распространенных моделей составляет 20–22%. Все фотоэлементы, из которых состоит панель, направлены в одну сторону, что требует установки ее под определенным углом к солнечным лучам. При смещении угла количество вырабатываемого тока значительно снижается. Сумерки, затененное место и неправильно падающий свет слабо улавливается ячейками, из-за чего батарея не вырабатывает энергию. Поэтому такой модуль рационально устанавливать при большом количестве прямых солнечных лучей и ясных дней.
    2. Поликристаллические батареи. Их КПД в пределах 17–18% из-за того, что часть кремниевых пластинок направлены в разные стороны. Благодаря этому увеличивается время работы, и можно использовать в облачную погоду или затемненном месте.
    3. Аморфные панели. КПД до 10%, что обусловлено слишком тонким слоем кремния, напыляемого на подложку из металла или пластика. Постепенно эффективность снижается, и через 3–4 года батарея может прекратить работу. Но благодаря случайному направлению кремниевых чешуек, улавливается весь возможный свет.
    4. Гибридные панели состоят из монокристаллических ячеек, вместе с которыми используют и аморфное нанесение. Это увеличивает захват световых лучей и время работы, что повышает КПД.

    Отдельно выделяются полимерные солнечные батареи, которые производятся с помощью печати нескольких слоев на пластиковой подложке. Из-за того, что фоточувствительный материал не требует жесткого основания, чаще всего такие панели выпускают гибкими.

    Такая особенность дает возможность использовать их на любой поверхности. КПД достигает 6%, но производство достаточно дешевое из-за отказа от дорогостоящего кремния и потерь при транспортировке.

    Но к сожалению, технология довольно новая, и имеет меньшее распространение.

    Если в доме проживают постоянно и довольно давно, то количество потребляемой энергии можно посмотреть в квитанциях.

    Но все равно это будет только общей картиной, не предоставляющей возможности понять, как потребление меняется в зависимости от дня недели и времени суток.

    Для того чтобы это узнать потребуется дополнительно рассчитать, какая часть из общей массы электричества идет на поддержания работы приборов в фоновом режиме, а что используется осознано.

    Порядок определения потребления энергии:

    1. Для начала следует обойти весь дом, и записать все оборудование, которое потребляет энергию беспрерывно. К таким относятся холодильники, морозильные камеры, бойлеры, теплые полы, телефоны и прочее. После этого следует свериться с инструкцией, чтобы узнать сколько КВт/ч потребляют те или иные устройства. На данном этапе часто происходит отсечение не используемой техники, что сокращает расход средств.
    2. Когда стал известен постоянный расход энергии, начинают рассчитывать переменный. Малый пиковый период приходится на утренние часы, когда все собираются на работу или в школу. А большой пик необходимости в электричестве наступает после 17–18 часов, когда возвращаются с работы. Но все это зависит от привычек каждой семьи, и необходимо провести исследование, когда именно и как долго используются осветительные приборы, а также другая техника. Самыми большими потребителями являются аппараты для приготовления пищи, телевизоры и стационарные компьютеры, поэтому особенно важно точно посчитать время их работы.
    3. После того, как стало известно потребление бытовых приборов, начинают следить за частотой использования осветительных приборов. Важно понять, что в зимний период светает позже, а темнеет раньше. В Московской области световой день, при котором на улице хорошо видны предметы без дополнительного освещения, всего 8 часов. Время нормальной освещенности помещения с помощью солнечных лучей еще меньше, поэтому на лампы приходится значительная нагрузка, и их обязательно надо учитывать.

    Когда все значения зафиксированы, конечное значение обязательно умножают на 10–20%, чтобы создать резерв для непредвиденных ситуаций. Это значение и нужно использовать для расчета дополнительного оборудования и площади солнечных панелей.

    В зависимости от количества солнечных дней и освещенности участка, выбирают тип панели. Для того чтобы полностью обеспечить частный дом, понадобится энергетический показатель потребления дома. Чтобы облегчить расчет необходимо сделать следующее:

    • вычесть из общей суммы работу приборов, происходящую в солнечные часы;
    • оставшееся значение разделить на солнечный период.

    Именно столько электричества в час должно поступать и сохраняться в аккумуляторе для нормального функционирования дома.

    Но прежде чем покупать панели, необходимо узнать уровень инсоляции (количество лучей попадающих на поверхность) в данном регионе.

    Если установка будет работать в доме с постоянным проживанием, нужно смотреть на самое минимальное значение за год. А если это дача для летнего проживания, выбирают минимальное значение для теплого времени года.

    Общую сумму разделяют на уровень инсоляции и производительность выбранной панели. В результате получают минимальное количество штук, которые необходимы для функционирования дома. При этом важно чтобы десятые доли округлялись в большую сторону.

    Сами панели нельзя подключить к электросети дома. Для этого понадобится еще несколько устройств.

    Комплектующие:

    1. Контроллер, предотвращающий перепады тока. Панель можно подключать только через него.
    2. Аккумулятор необходимой емкости. Накапливает постоянный ток, поступающий с панели.
    3. Инвертор — узел, преобразующий постоянный в переменный ток.

    Все эти механизмы должны подходить друг к другу. Поэтому необходим подбор совместимых устройств, выдерживающих определенную мощность.

    Электрификация дома с помощью солнечных панелей становится все популярнее, и многие задумываются о том, чтобы сэкономить на этом. К сожалению, пока что производство такой энергии стоит дороже, чем от традиционной электростанции. Но по прогнозам в течение 10 лет ситуация изменится на противоположную, поэтому вложение в собственные панели быстро окупится.

    Источник: https://www.kakprosto.ru/kak-944706-solnechnye-batarei-dlya-dachi-i-doma-princip-raboty-i-raschet-neobhodimogo-kolichestva

    Ссылка на основную публикацию