Инструкция по сборке твердотельного реле своими руками

Для многих схем силовой электроники твердотельное реле стало не просто желательно но и необходимо. Их преимущество – в  количестве срабатываний несоизмеримо больших, по сравнению с  электромеханическими,  на порядок (а на практике и того больше).

До изготовления твердотельного реле я обычно изготавливал  цепочки из симистора и схемы управления с гальванической развязкой типа симистороной  оптопары MOC30***. Для примера  будем использовать следующие (базовые) компоненты:

  • Симисторная оптопара MOC3083 (VD1)
  • Симистор с изолированным анодом марки BT139-800 16A (V1 от Philips)
  • Сопротивление для ограничения тока через светодиод MOC3083 (R1 750Ом 0,5Вт)
  • Светодиод индикации АЛ307А (LD1)
  • Резистор на управляющий электрод симистора 160 Ом (R2 , 0.125Вт)
  • Рис 1

    Твердотельное реле – эта как бы инкапсуляция такой цепочки. Для изготовления твердотельного реле воспользуемся рекомендациями предложенными в сборнике [1 ] .

    В ней автор рекомендует для повышения надежности электронных устройств (и самодельных в том числе) заключать их в эпоксидный брикет, приводя подробное описание данной технологии. Посмотрим, что нам понадобиться для изготовления твердотельного реле по этой методике. (см. фото 1).

    Отметим попутно, что во время написания статьи [ 1 ] клеевые пистолеты ещё не были столь распространены как сейчас.

    Итак, выбираем подложку из металла, который быстро проводит тепло, например алюминий. Размер и толщина подложки выбираются исходя из количества тепла, которое потребуется отвести от симистора с учетом того , что сама подложка для этой цели, может быть установлена на металлической поверхности.

     Далее выбираем опалубку для заливки, с таким расчетом, чтобы внутри нее разместить все элементы  указанной цепочки. В качестве опалубки используем любые удобные элементы из пластика напр.

    цилиндр от пластиковой трубы, часть пластикового короба от кабельного лотка, в моем случае опалубка изготовлена из части пенала для принтерных  расходников. Далее приклеиваем  пистолетом опалубку к подложке, и заклеиваем отверстия и щели, если они есть. Помещаем схему, спаенную и проверенную.

    Здесь необходимо отметить, что выводы у симистора определяются не всегда однозначно.

    Чтобы проверить открывается ли симистор от протекания тока через светодиод оптопары MOC3083, в большинстве случаев,  можно узнать (без подключения напряжения 220В),  подцепившись тестером на мегаомах к выходным концам симистора схемы. При открывании симистора сопротивление будет падать от десятком мегаом  до единиц килом (по тестеру).

    Для симистора, в обязательном порядке,  делаем промежуточный слой между спинкой корпуса и подложкой из теплопроводной пасты марки КПТ-8.

    Если у симистора анод не является изолированным,  необходима также изоляционная прокладка, например из  пластинки слюды, вырезанной по размеру корпуса и обработанной пастой КПТ с обеих сторон (все элементы схемы не должны иметь электрического контакта с подложкой!). Далее, прижав корпус симистора,  фиксируем  его на подложке с помощью клеевого пистолета (рис 2).

    Укладываем остальные части схемы, обращая внимание, чтобы они не касались металлической подложки, а находились  как бы «на весу».  Готовим компаунд для заливки формы в отдельной емкости. Для этого основной компонент эпоксидки смешиваем с порошком алебастра, не добавляя пока отвердитель.

    Следует отметить, что алебастр добавляем не только для увеличения объема компаунда, но и для снижения текучести эпоксидки. В противном случае раствор ЭДП будет вытекать через мельчайшие отверстия в форме.  Добавляем отвердитель к полученной массе компаунда и вновь перемешиваем. Масса должна сохранять текучесть.

     Заполнив форму не следует беспокоиться об образовавшихся неровностях на поверхности брикета.  (рис 3).

    Если расположить его на горизонтальной поверхности, то силы гравитации сделают поверхность достаточно гладкой в течении получаса  (рис 4) и имеющую цвет светлого кофе.

     Автор далек от мысли, чтобы настаивать на указанных материалах и технологии, как единственно возможной.

    Наверняка, например, подойдет использование клея типа «жидкие гвозди» или полиуретановая пена в качестве компаунда, лишь бы материал обладал низкой электропроводностью и достаточной электрической прочностью.

    Теперь внимательно посмотрим на исходную схему. Если подключать новоиспеченное реле к Arduino и т.п. устройствам на микроконтроллерах с питанием не более 5В, этой схемы будет достаточно.

    Что же делать , если необходимо расширить диапазон управляющих напряжений, скажем, от 5 до 24 В? Схемотехника  MOC30** позволяет нам это сделать без дополнительных ухищрений, поскольку диапазон тока через светодиод  оптопары простирается там до 50 мА. Сложнее обстоит дело с индикаторным светодиодом, таким, например, как  АЛ307А .

    Согласно рекомендациям производителей:  не следует устанавливать постоянный прямой ток /ПР через светодиод, близкий к максимальному пределу, указанному в даташите. Обычно это 20 мА. Длительная работа с таким током снижает долговременную надёжность. Для получения приемлемой яркости свечения достаточно задать ток 4…10 мА. Т.Е.

    нужно каким-то образом организовать схему так, чтобы ток, протекающий по цепи АЛ307 – 1,2 MOC3083 мало зависел бы от прилагаемого напряжения.

    Кажется , что наиболее просто этого добиться подключив стабилитрон D  после балластного сопротивления R1, учитывая тот факт, что напряжение на светодиоде, как правило линейно зависит от протекаемого тока, начиная от некоторого уровня (напр. 1,6 В) . В этом случае стабилитрон с  опорным напряжением 3,3В откроется при достижения опорного,  и будет «стравливать»  избыточный ток через себя.

    Но более эффективны в этом случае схемы с питанием данной цепи источником тока [ 2, 3 ].

    Следуя рекомендациям указанных источников,  построим схему с питанием стабильным током в диапазоне 7—14 мА и в диапазоне питающих напряжений 4—24В.

    Освоив данную технологию и «набив руку», без  сомнения, можно изготавливать твердотельные реле в больших количествах  словно «горячие пирожки».  

    Литература:

  • Бирюков С.А.Устройства на микросхемах: цифровые измерительные устройства, источники питания, любительские конструкции, Москва «Солон-Р», 2000, стр. 188
  • П. Хоровиц, У Хилл  Искусство  схемотехники, Москва, «Мир» ред. М.В. Гальперина 1986 Том 1. Стр.103
  • Горошков Б.И. Радиоэлектронные устройства (Справочник) М. «Радио и связь» 1984г
  • Содержание

    Список радиоэлементов

    Скачать список элементов (PDF)

    Твердотельное реле своими руками: виды и конструкция, рекомендации по изготовлению

    Старые механические реле отличаются двумя недостатками – малым быстродействием и ограниченным ресурсом по количеству допустимых переключений.

    Пришедшие им на смену электронные коммутаторы (другое название – твердотельное транзисторное или симисторное реле) полностью лишены этих недостатков, что привлекло к ним внимание специалистов по электронике.

    Отсутствие механических частей, а также простота схемы позволяют без труда собирать их в домашних условиях. Справиться с поставленной задачей поможет ознакомление с особенностями устройства и принципом работы этих элементов.

    Что такое твердотельные реле и их классификация

    Самодельное твердотельное реле

    Твердотельные реле (или ТТР) – это электронные приборы со структурой, не содержащей механических компонентов. Принцип их действия основан на особенностях работы полупроводниковых переходов, отличающихся высокой скоростью коммутаций и защищенностью от физических полей.

    Переключение твердотельных реле основано на принципе срабатывания электронного ключа.

    В качестве ключевых элементов в этих изделиях традиционно применяются такие распространенные электронные компоненты, как транзисторы, управляемые диоды или тиристоры. В зависимости от используемых при их изготовлении структур ТТР подразделяются на приборы, построенные на основе одного из перечисленных элементов (реле на симисторах, например).

    В соответствии с режимами работы и по виду коммутируемых напряжений образцы твердотельных реле, изготавливаемых на базе полупроводников, делятся на следующие группы:

    • устройства, коммутирующие постоянный ток;
    • приборы, управляющие работой нагрузочных линий с переменными токовыми параметрами;
    • универсальные изделия, работающие в различных цепях.

    Для первых устройств характерно управление постоянными напряжениями величиной не более 32 Вольт. Представители двух оставшихся позиций способны коммутировать значительные по величине потенциалы (вплоть до десятков киловольт).

    Преимущества ТТР

    К преимуществам реле относят:

    • возможность коммутации сравнительно мощных нагрузок;
    • высокое быстродействие;
    • работа в условиях гальванической развязки;
    • способность выдерживать кратковременные перегрузки.

    Ни один образец механических или электромеханических изделий не в состоянии конкурировать с электронными коммутаторами. Поэтому новые структуры на основе полупроводников полностью вытеснили старые механические образцы.

    Уникальные эксплуатационные характеристики ТТР позволяют применять их без каких-либо ограничений с одновременным увеличением ресурса срабатываний.

    Все перечисленные достоинства этих приборов являются прекрасным поводом для того, чтобы попытаться собрать твердотельное реле своими руками.

    К минусам этих изделий следует отнести необходимость дополнительного питания, а также потребность в отводе излишков тепла, образующегося при работе с мощными нагрузками.

    Самостоятельное изготовление

    Чтобы изготовить реле тока своими руками, нужно запастись рядом электронных компонентов, составляющих основу коммутирующих цепей. Также потребуются специальные материалы, из которых будет изготавливаться корпус самодельного реле.

    Электронные элементы

    В качестве электронных компонентов, используемых при самостоятельном изготовлении простейшего образца ТТР, обычно применяются следующие распространенные детали:

    • оптронная пара МОС3083;
    • симистор марки ВТ139-800;
    • биполярный транзистор серии КТ209;
    • комплект резисторов, а также стабилитрон и светодиод, служащий индикатором срабатывания реле.

    Схема твердотельного реле

    Перечисленные электронные элементы спаиваются навесным способом согласно приводимой в источниках схеме. Наряду с другими компонентами она содержит в своем составе ключевой транзистор, подающий стабилизированные импульсы на управляющий диод оптронной пары.

    Момент подачи фиксируется светодиодным элементом, использование которого в исполнительной цепи допускает визуальный контроль.

    Под воздействием этих импульсов происходит мгновенное срабатывание полупроводникового симистора, включенного в коммутируемую цепочку. Применение в такой схемы включения оптронной пары позволяет управлять постоянными потенциалами от 5 до 24 Вольт.

    Ограничительная цепочка из резистора со стабилитроном необходима для снижения амплитуды тока, протекающего через светодиод и управляющий элемент до минимальной величины. Такое схемное решение позволяет продлить срок службы большинства используемых при построении схемы элементов.

    Конструкция корпуса (заливка компаундом)

    Для изготовления корпуса сборного изделия в первую очередь потребуется алюминиевая пластина толщиной 3-5 мм, она будет служить основанием под электронную сборку. Размеры выбираются произвольно при условии, что они гарантируют хороший отвод тепла в окружение. Еще одно требование, предъявляемое к этой детали – хорошо обработанная, абсолютно гладкая поверхность, отполированная специальным инструментом или до блеска зачищенная шкуркой.

    На следующем шаге подготовки корпуса выбранная в качестве основания пластина оборудуется окаймлением из приклеиваемой по периметру полоски картона.

    В итоге получится небольшой короб, предназначенный для размещения уже собранной ранее электронной схемы.

    На его основании из компонентов жестко крепится только симистор, все остальные элементы удерживаются в пределах корпуса за счет собственных связей.

    Для подключения к нагрузке и электропитанию наружу коробки выводятся соответствующие проводники.

    Читайте также:  Датчик протечки (утечки) воды: виды, как выбрать, монтаж своими руками

    В дальнейшем надежный крепеж всей сборки обеспечивается заливаемым в коробку жидкого компаунда, заранее подготовленного в подходящей емкости. После его застывания получится монолитная конструкция, по защищенности от вибраций и других воздействий не уступающая лучшим промышленным образцам. Единственный ее недостаток – невозможность разборки с целью последующего ремонта схемы.

    Разновидности ТТР

    При сборке схем твердотельных реле своими руками следует иметь в виду, что для этих целей могут использоваться самые различные компоненты. Ничто не мешает взявшемуся за работу человеку выбрать современные полевые транзисторы, например, отличающиеся высоким быстродействием и малым энергопотреблением. Эти элементы управляются только потенциалами, обеспечивая возможность коммутации достаточно мощных потребителей. Такие полевые структуры, как MOSFET способны переключать нагрузочные цепи, мощность в которых достигает десятков кВт.

    Для самостоятельного изготовления твердотельного реле допускается подбирать другие полупроводниковые структуры, способные управлять силовыми цепями: тиристоры, например, или биполярные транзисторы.

    Главное – чтобы они соответствовали требованиям, предъявляемым к функциональности данной схемы и рабочим параметрам ходящих в ее состав элементов.

    Все остальное зависит от подготовленности и внимательности исполнителя.

    твердотельное реле от..

    zandr Загрузка

    07.05.2017

    6569

    Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

    Отписаться от уведомлений вы всегда сможете в профиле автора.

    Подписаться

    14

    Не так давно я собрал и запустил свой принтер с большой областью печати. При сборке принтера я заказал себе силиконовую грелку с размером 40*40 см и мощностью полтора киловатта. Как назло о твердотельном реле я не подумал, т.к. расчитывал запитать стол через обычное реле, как не подумал и о потребляемой мощности. В общем когда я собрал принтер и запустил это дело то тот фейерверк, который я увидел через прозрачный корпус реле, меня весьма огорчил. Ествественно я стал искать твердотелку в моем мухосранске и… не нашел. Более того продавцы в радиолавках делали большие глаза и смотрели на меня как на чудака с другой планеты. при этом али завале копеечными предложениями, а тут нет от слова вообще. Я конечно заказал себе твердотелку с али, но грусть тоска меня овеяла.Так как имею мало мальский опыт дружбы с паяльником я залез в тырнет и нашел схему твердотельного реле. Осознав что в ней нет ничего сложного я решил собрать ее.

    Итак схема:

    Конечно можно все сделать красиво! Но В одном месте чешется, Хочется печатать, да и схема плевая. Поэтому собираем все навесом. Получилось: Радиатор я взял от старого блока питания ATX.Естественно что подобный монтаж очень опасен. все таки он подвижный. Поэтому в идеале все надо как то зафиксировать. Опять же в идеале это все залить какой нибудь эпоксидной смолой и радоваться жизни но смолы под рукой нету, а есть лень! Поэтому берем клеевой термопистолет и заливаем все это хозяйство чем нибудь липким, не забыв предварительно проверить все подключив!

    Получаем:

    Да! Да! Каркас под заливку мне тоже делать было лень!!! Поэтому просто заливал в несколько проходов чтобы нарастить изоляционно-фиксирующий слой на всех токоведущих элементах схемы. Все! дальше подключаем к принтеру и в путь! Могу сказать что данная схема расчитана на ток до 60 ампер. Так как у меня портребление составляет порядка 7 ампер радиатор не греется от слова совсем и его смело можно было взять меньше. Но нам же лень!!! 🙂

    итак получилось:

    Осталось напечатать для реле корпус и спрятать всю порнографию за красивым пластиком.

    Всем бобра!!!

    Подпишитесь на автора, если вам нравятся его публикации. Тогда вы будете получать уведомления о его новых постах.

    Отписаться от уведомлений вы всегда сможете в профиле автора.

    Подписаться

    14

    Твердотельное реле своими руками | Все своими руками

    Твердотельное реле (ТТР) или Solid State Relay (SSR) — это электронные устройства, которые выполняют те же самые функции, что и электромеханическое реле, но не содержит движущихся частей. Серийные твердотельные реле используют технологии полупроводниковых устройств, таких как тиристоры и транзисторы.

    То есть вместо подвижных контактов в ТТР используются электронные полупроводниковые ключи, в которых цепи управления имеют гальваническую развязку с силовыми, коммутируемыми цепями. Благо сейчас переключательных полевых транзисторов приобрести нет никаких проблем.

    Таким образом, для построения твердотельного реле нам потребуется MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) транзистор, русский эквивалент термина — МОП-транзистор или полевой транзистор с изолированным затвором, и оптрон.

    На страницах сайта есть статьи, посвященные транзисторным ключам с оптической изоляцией – «Транзисторный ключ переменного тока»

    В данной статье рассмотрен ключ для коммутации переменного тока. Используя SMD компоненты по этой схеме можно изготовить ТТР переменного тока.

    Часть деталей монтируется на печатной плате, которая крепится к алюминиевой положке. Транзисторы устанавливаются на подложку через слюдяные прокладки. Конденсатор С1 лучше брать или танталовый или керамический.

    Его емкость можно уменьшить.
    Еще одна статья – «Транзисторный ключ с оптической развязкой»

    • В этой схеме к качестве коммутирующих транзисторов используются биполярные транзисторы разных структур.
    • Есть еще одна схема гальванически развязанного ключа на моп-транзисторе с защитой от предельного тока нагрузки. О нем шла речь в статье «Mощный ключ постоянного тока на полевом транзисторе»

    Все это хорошо, если напряжения, с которыми работают ТТР реализованные на MOSFET, позволяют управлять этими полевыми транзисторами. А как быть с коммутацией напряжения, например 3,3 вольта. Для открывания полевого транзистора этого напряжения явно не достаточно.

    Нужен какой-то преобразователь, способный поднять напряжение управления хотя бы до пяти вольт. Классический импульсный преобразователь использовать для реле – слишком громоздко. Но есть другие преобразователи – оптические, например — TLP590B.

    TLP590B Datasheet Pdf

    Такие преобразователи на выходе обеспечивают напряжение порядка 9 вольт, что вполне достаточно для управления моп-транзисторами. Из документации на эти преобразователи видно, что они очень маломощные и способные отдать на выходе ток всего лишь порядка 12мкА. У моп-транзисторов есть такой параметр – Заряд затвора – Qg.

    Пока затвор данного транзистора не получит необходимый заряд – транзистор не начнет открываться. Скорость заряда зависит от тока, который может обеспечить цепь управления, чем больше ток управления, тем быстрее затвор получает необходимый заряд, тем быстрее открывается транзистор.

    Тем меньше будет время, когда коммутирующий транзистор будет находиться в активной зоне выходной характеристики – тем меньше на нем будет выделяться тепла. Но в нашем случае, когда транзистор работает не в преобразователе, на относительно высоких частотах, а в качестве реле, вкл – выкл, ток в 12 мкА будет достаточен.

    Правда лучше конечно выбирать ключевые транзисторы с малым зарядом затвора. Например.

    AOT7S60 Datasheet Pdf

    Этот транзистор способен коммутировать напряжение 600В при токе стока 7А. Мощность стока при температуре +25 С — 100Вт. При этом заряд затвора Qg всего 8,2 нанокулона = 8,2nC. Для сравнения популярный транзистор IRF840 имеет Qg = 63nC.

    IRF840 Datasheet Pdf

    Для управления низковольтными нагрузками можно применить транзистор irlr024zpbf. При данных режимах измерения ток стока – 5А, напряжение сток – исток – 44В, напряжение затвор – исток -5В, имеет типовое значение заряд затвора Qg = 6,6nC.

    irlr024zpbf Datasheet Pdf

    Но у меня таких транзисторов нет и я для реле использовал транзисторы IRL2505 с каналом типа n. У данного транзистора Qg = 130nC !

    IRF2505 Datasheet Pdf

    Другой транзистор с каналом типа р — IRF4905, у этого транзистора максимальный Qg = 180nC !!!

    IRF4905 Datasheet Pdf

    Схему собрал самую простую, ту что на рисунке 4

    В качестве коммутирующего транзистора в этой схеме использован транзистор IRF4905 с каналом – р. Транзистор не был снабжен теплоотводом и в открытом состоянии нагревался до +60˚С при токе 2А. Напряжение 3,3В коммутировал нормально. Теперь, имея в своем распоряжении такой преобразователь, что нам мешает использовать в положительном проводе питания и транзистор с каналом n?

    Результат превзошел мои ожидания. Транзистор IRF2505 без радиатора практически не грелся при токе нагрузки 4А. при напряжении на нагрузке 12,6 В В обоих экспериментах ток управления я выставил примерно 10 мА. Максимальный ток светодиода по документам – 50 мА. Больше 10 мА не стоит увеличивать ток – практически ни чего не меняется.

    Я очень доволен таким реле. Если описать параметры этой релюхи, применительно к электромагнитному реле, то они были бы такими. Напряжение срабатывания – какое хочешь ! Только подбирай R2. Ток срабатывания – 10 мА. Ток и напряжение коммутации – какое хочешь !!! (В разумных пределах конечно)Только подбирай транзисторы. Не слабо.

    Хотелось бы проверить данные устройства с коммутацией емкостных и индуктивных нагрузок. Это позже. Пока искал буквы на клавиатуре, пришла еще одна мысль. Если транзистор поставить в диагональ диодного моста, то можно коммутировать переменные напряжения. Таким реле можно коммутировать обмотки трансформаторов. Пока все. Всем удачи. К.

    В.Ю.

    Скачать “Самодельное-твердотельное-реле” Самодельное-твердотельное-реле.rar – Загружено 235 раз – 80 KB

    Твердотельное реле

       Твердотельное реле – это современный модульный полупроводниковый прибор, содержащий в своем составе мощные силовые ключи на симисторах, тиристорах либо транзисторах. Такие реле используются для замены традиционных электромагнитных реле, контакторов и пускателей, так как обеспечивают наиболее надежный метод коммутации.

       Твердотельные реле, как правило, состоит из оптопары, которая изолирует входную цепь пуска, оптопару — гальваническую развязку и мощный симистор, который выступает в качестве выключателя.

    Его название происходит от схожести с электромеханическими реле, но по сравнению с обычными, не происходит механического износа, кроме того, ТТР имеют возможность переключать даже очень большие токи. В этом случае у электромеханических реле быстро износятся контакты.

    Также эти реле позволяют переключать нагрузку со скоростью гораздо выше, чем у электромеханических реле.

    Преимущества твердотельных реле

    •  — Нет механических деталей, подверженных износу.
    •  — Включение и выключение нагрузки происходит только при переходе напряжения через ноль.
    •  — Отсутствие электрических помех при работе.
    •  — Широкий диапазон рабочих напряжения.
    •  — Высокий уровень изоляции между управлением и цепью нагрузки.
    •  — Высокая механическая прочность.
    •  — Отсутствие шума при коммутации.

    Читайте также:  В доме меняют газовые трубы: особенности проведения ремонта и замены газовых труб в многоквартирном доме

       Если у вас возникли проблемы с покупкой готового твердотельного реле, ассортимент которых уже достаточно широк, можно спаять его самому, по нижеприведённой схеме.

    Принципиальная схема твердотельного реле

    Особенности данной схемы:

    •  Управляющее напряжения от 3 В до 30 В постоянного тока.
    •  — Выходное напряжение коммутации от 115 В до 280 в переменного тока.
    •  — Минимальный рабочий ток от 50 мА.
    •  — Выходная мощность 400 Вт (без радиатора на симисторе).

       Поэтому если это реле будет работать в условиях коммутации токов, превышающих 2 ампера, необходимо предусматривать охлаждающие радиаторы. При регулировке асинхронных двигателей запас по току нужно увеличить до 10 раз. Необходимо принять во внимание и тот факт, что способность твердотельного реле выдерживать перегрузки по току определяется уровнем «ударного тока».

       Форум по устройствам автоматики

       Схемы автоматики

    Схема твердотельного реле: рекомендации по сборке устройства своими руками и инструкция по подключению

    В отличие от других типов реле, твердотельное лишено подвижных контактов. Коммутация электроцепей в этом приборе выполняется по принципу электронного ключа, выполненного на полупроводниках. Чтобы при создании твердотельного реле не возникло проблем, необходимо разобраться с принципом работы прибора и его конструкцией.

    Однако начать стоит с его описания основных преимуществ:

    • Возможность коммутировать мощные нагрузки.
    • Переключение происходит с высокой скоростью.
    • Качественная гальваническая развязка.
    • Способно выдерживает серьезные перегрузки на коротком временном отрезке.

    Ни одно механическое реле не обладает аналогичными параметрами. Область применения твердотельного реле (ТТР) практически неограничена. Отсутствие подвижных элементов в конструкции существенно увеличивает срок службы устройства.

    Однако следует помнить, что прибор имеет не только преимущества. Некоторые свойства ТТР являются недостатками.

    Например, во время эксплуатации мощных устройств возникает необходимость в применении дополнительного элемента для отвода тепловой энергии.

    Зачастую размеры радиатора существенно превышают габариты самого реле. В такой ситуации монтаж прибора несколько затрудняется. Когда устройство закрыто, то в нем наблюдается утечка тока, что приводит к появлению нелинейной вольт-амперной характеристики.

    Таким образом, при использовании ТТР следует обращать внимание на характеристики переключаемых напряжений. Некоторые виды устройств способны работать только в сетях с постоянным током.

    При подключении твердотельного реле к цепи нужно предусмотреть способы защиты от ложных срабатываний.

    Виды устройств

    Твердотельные реле можно разделить на несколько групп в соответствии с определенными параметрами. Чаще всего для классификации этих прибор используется категория подключенной нагрузки, а также способ контроля и коммутации напряжения. Таким образом, можно выделить 3 вида реле:

    • Приборы, работающие в цепях постоянного тока.
    • Переключатели для электроцепей переменного тока.
    • Универсальные реле.

    Если классифицировать приборы по характеру подсоединенной нагрузки, то можно выделить 2 типа приборов, работающих в сетях переменного тока, — одно- и трехфазные. С их помощью можно управлять довольно высокой нагрузкой при силе тока 10−75 А. также стоит обратить внимание на пиковые показатели электротока, которые способны достигать 500 А.

    Твердотельные переключатели можно применять в различных типах цепей, например, емкостных либо резистивных. Их конструкция позволяет избавиться от шума во время работы, а также добиться плавного управления приводами, например, электромоторами или лампами. ТТР отличаются высокой надежностью, но во многом срок службы приборов зависит от производителя.

    Рекомендации по изготовлению

    В соответствии с особенностями конструкции, схему прибора стоит собирать не на текстолите, а с помощью навесного монтажа. Существует довольно много схемотехнических решений, а выбирать нужный следует в зависимости от различных параметров, например, коммутируемой мощности.

    Электронные элементы и проверка работоспособности

    В качестве примера можно рассмотреть простую схему.

    Применение оптической пары МОС3083 позволяет формировать управляющий сигнал, входное напряжение которого находится в диапазоне 5−24 В. Чтобы продлить срок работы светодиода АЛ307А, в схему введена цепочка, состоящая из сопротивления и стабилитрона. Найти все электронные элементы будет несложно. Собранная схема в обязательном порядке проверяется на работоспособность.

    Для этого можно не подключать к цепи напряжение 220 В, а ограничиться параллельным подсоединением тестера к линии управления симистора. На измерительном приборе предварительно следует выбрать режим «мОм» и подать питание в 5−24 В на участок генерации управляющего напряжения. Если схема была собрана правильно, то тестер покажет разницу сопротивлений в диапазоне мОм-кОм.

    Конструкция корпуса

    Следующим шагом станет установка по периметру пластины бордюра из пластика либо плотного картона. В результате должен получиться короб, который затем заливается эпоксидной смолой. Внутрь корпуса устанавливается собранная с помощью навесного монтажа схема реле. При этом на пластине из алюминия должен располагаться только симистор.

    Чтобы улучшить процесс отвода тепла, следует использовать термопасту, разместив ее на всей площади контакта алюминиевого основания и полупроводникового элемента. Также следует помнить, что у некоторых симисторов анод не изолирован, и они устанавливаются только через слюдяную подложку.

    Заливка компаундом

    После этого созданная схема аккуратно заливается компаундом до верхнего уровня, оставляя на поверхности только часть головки контрольного светодиода. При изготовлении корпуса твердотельного переключателя можно использовать любые растворы, подходящие для литья. Единственным критерием при выборе ингредиентов является отсутствие способности проводить электроток.

    Самодельное ТТР станет хорошим выбором для подключения к низковольтной цепи с малой мощностью. Собирать более мощные приборы, рассчитанные на высокие напряжения нецелесообразно. Такие схемы отличаются высокой сложностью и лучше купить готовый прибор.

    Инструкция по сборке твердотельного реле своими руками

    Твердотельное реле (ТТР) – прибор из серии электронных компонентов немеханического действия. Отсутствие механики открывает больше возможностей любителям электроники сделать твердотельное реле своими руками для личного пользования.

    Рассмотрим такую возможность подробнее.

    Конструкция и принцип действия ТТР

    Если большая часть подобной электроники традиционно содержит подвижные детали контактных групп, твердотельное реле таких деталей не имеет совсем. Коммутация цепи схемой устройства осуществляется по принципу электронного ключа. А роль электронных ключей обычно исполняют встроенные в тело реле полупроводники – силовые транзисторы, симисторы, тиристоры.

    Прежде чем пытаться изготовить твердотельное реле самостоятельно, логично ознакомиться с базовой конструкцией подобных устройств, понять принцип их функционирования.

    Промышленным производством выпускаются реле твердотельные различной конфигурации, предназначенные под самые разные условия практического применения. Выбор модификаций обширный

    В рамках плотного изучения прибора сразу же следует выделить преимущественные стороны ТТР:

    • коммутация мощной нагрузки;
    • высокая скорость переключения;
    • идеальная гальваническая развязка;
    • способность кратковременно держать высокие перегрузки.

    Среди механических конструкций найти реле с подобными параметрами реально не представляется возможным. Вообще, преимущества относительно механических собратьев у твердотельных реле выражаются внушительным списком.

    Два электронных прибора, функционально обеспечивающих коммутацию цепей: слева сделан на основе твердотельной конструкции, справа – традиционная механическая система переключения

    Условия эксплуатации для ТТР практически не ограничивают применение этих устройств. К тому же отсутствие подвижных механических деталей благоприятно сказывается на продолжительности службы приборов. Так что есть все основания, чтобы заняться твердотельным реле – собрать устройство своими руками.

    Однако, справедливости ради, наряду с положительными моментами следует отметить свойства реле, характеризуемые как недостатки. Так, для эксплуатации мощных приборов, как правило, требуется дополнительный компонент конструкции, который предназначен отводить тепло.

    На случай коммутации мощной нагрузки реле твердотельного исполнения практически всегда дополняются мощными радиаторами охлаждения. Этот момент несколько усложняет применение ТТР

    Радиаторы охлаждения твердотельных реле имеют габаритные размеры в несколько раз превосходящие габариты ТТР, что снижает удобство и рациональность монтажа.

    Приборы ТТР в процессе эксплуатации (в закрытом состоянии) дают обратный ток утечки и показывают нелинейную вольт-амперную характеристику. Не все твердотельные реле допустимо использовать без ограничений в характеристиках коммутируемых напряжений.

    Конструкция для применения только в схемах, где питание осуществляется постоянным током. Обычно эти приборы отличают малые габариты и небольшая мощность коммутации

    Отдельные виды устройств предназначены коммутировать только постоянный ток. Внедрение твердотельных реле в схему обычно требует обращения к дополнительным мерам, направленным на блокировку ложных срабатываний.

    Твердотельные реле часто можно встретить в общем электрощитке квартиры.

    Как работает твердотельное реле?

    Управляющий сигнал (обычно напряжение низкого уровня, исходящее, к примеру, от контроллера управления) подаётся на светодиод оптоэлектронной пары, присутствующей в схеме ТТР. Светодиод начинает излучать свет в сторону фотодиода, который в свою очередь открывается и начинает пропускать ток.

    Обобщённая схема ТТР, наглядно показывающая, каким образом функционирует электронный прибор: 1 – источник напряжения управления; 2 – оптопара внутри корпуса реле; 3 – источник тока нагрузки; 4 – нагрузка

    Проходящий через фотодиод ток приходит на управляющий электрод ключевого транзистора или тиристора. Ключ открывается, замыкает цепь нагрузки.

    Так работает функция коммутации прибора. Вся электроника традиционно заключена в монолитный корпус. Собственно, поэтому устройство и получило название твердотельного реле.

    А о том, как подключить твердотельное реле можно прочесть в этом материале.

    Разновидности твердотельных переключателей

    Весь существующий ассортимент приборов условно можно разделить по группам, исходя из категории подключаемой нагрузки, особенностей контроля и коммутации напряжений.

    Таким образом, в общей сложности наберётся три группы:

  • Устройства, действующие в цепях постоянного тока.
  • Устройства, действующие в цепях переменного тока.
  • Универсальные конструкции.
  • Первая группа представлена приборами с параметрами рабочих управляющих напряжений  3 – 32 вольта. Это относительно малогабаритная электроника, наделённая светодиодной индикацией, способная функционировать без перебоев при температурах -35 / +75 ºС.

    Широко распространённое исполнение электронного прибора для применения в однофазной электрической сети.

    Также встречаются иные варианты конструкций, но значительно реже

    Вторая группа – устройства, предназначенные под установку в сетях переменного напряжения.

    Здесь представлены конструкции ТТР для установки в сетях переменного тока, управляемые напряжением 24 – 250 вольт. Есть устройства, способные коммутировать нагрузку высокой мощности.

    Третья группа – приборы универсального назначения. Схемотехника этого вида устройств поддерживает ручную настройку на использование в тех или иных условиях.

    Если отталкиваться от характера подключаемой нагрузки, следует выделить два вида твердотельных реле переменного тока: однофазные и трёхфазные. Оба вида рассчитаны на коммутацию достаточно мощной нагрузки при токах 10 – 75 А. При этом пиковые кратковременные значения тока могут достигать величины 500 А.

    Читайте также:  Вентиляционная решетка с обратным клапаном: виды, устройство, принцип работы + инструкции по монтажу

    Широко распространённый вариант исполнения для применения в трёхфазной электрической сети.

    Часто используется в качестве линейного регулятора мощных электрических нагревателей (ТЭН)

    В качестве нагрузки, коммутируемой твердотельными реле, могут выступать ёмкостные, резистивные, индукционные цепи.

    Конструкции переключателей позволяют без лишнего шума, плавно управлять, к примеру, нагревательными элементами, лампами накаливания, электродвигателями.

    Надёжность работы в достаточной степени высока. Но во многом стабильность и долговечность твердотельных реле зависит от качества производства изделий. Так, устройства, выпускаемые под некой торговой маркой «Impuls», часто отмечаются непродолжительным сроком службы.

    С другой стороны, изделия фирмы «Schneider Electric» не оставляют повода для критики.

    Как сделать ТТР своими руками?

    Учитывая конструкционную особенность прибора (монолит), схема собирается не на текстолитовой плате, как это принято, а навесным монтажом.

    Вот такой выглядит самодельная конструкция твердотельного реле. Сделать нечто подобное несложно. Нужны лишь базовые навыки электронщика и электрика. Материальные затраты небольшие

    Схемотехнических решений в этом направлении можно отыскать множество. Конкретный вариант зависит от требуемой коммутируемой мощности и прочих параметров.

    Электронные компоненты для сборки схемы

    Перечень элементов простой схемы для практического освоения и построения твердотельного реле своими руками следующий:

  • Оптопара типа МОС3083.
  • Симистор типа ВТ139-800.
  • Транзистор серии КТ209.
  • Резисторы, стабилитрон, светодиод.
  • Все указанные электронные компоненты спаиваются навесным монтажом согласно следующей схеме:

    Принципиальная схема маломощного твердотельного реле для сборки своими руками. Небольшое количество деталей и простой навесной монтаж позволяют спаять схему без труда

    Благодаря использованию оптопары МОС3083 в схеме формирования сигнала управления величина входного напряжения может изменяться от 5 до 24 вольт.

    А за счёт цепочки, состоящей из стабилитрона и ограничительного резистора, снижен до минимально возможного ток, проходящий через контрольный светодиод. Такое решение обеспечивает долгий срок службы контрольного светодиода.

    Проверка собранной схемы на работоспособность

    Собранную схему нужно проверить на работоспособность. Подключать при этом напряжение нагрузки 220 вольт в цепь коммутации через симистор необязательно. Достаточно подключить параллельно линии коммутации симистора измерительный прибор – тестер.

    Проверка работоспособности твердотельного реле с помощью измерительного прибора. Если на вход устройства подано управляющее напряжение, переход симистора должен быть открыт

    Режим измерений тестера нужно выставить на «мОм» и подать питание (5-24В) на схему генерации напряжения управления. Если всё работает правильно, тестер должен показать разницу сопротивлений от «мОм» до «кОм».

    Устройство монолитного корпуса

    Под основание корпуса будущего твердотельного реле потребуется пластина из алюминия толщиной 3-5 мм. Размеры пластины некритичны, но должны соответствовать условиям эффективного отвода тепла от симистора при нагреве этого электронного элемента.

    Каркас под заливку корпуса будущего прибора. Делается из картонной полосы или других подходящих материалов. На алюминиевой подложке закрепляется универсальным клеем

    Поверхность алюминиевой пластины должна быть ровной. Дополнительно необходимо обработать обе стороны – зачистить мелкой шкуркой, отполировать.

    На следующем этапе подготовленная пластина оснащается «опалубкой» – по периметру приклеивается бордюр из плотного картона или пластика. Должен получиться своеобразный короб, который в дальнейшем будет залит эпоксидной смолой.

    Внутрь созданного короба помещается собранная «навесом» электронная схема твердотельного реле. На поверхность алюминиевой пластины укладывается только симистор.

    Закрепление симистора на алюминиевой подложке. Главное условие – этот электронный компонент необходимо плотно прижать к металлическому основанию.

    Только так обеспечивается качественный теплоотвод и надёжность работы

    Никакие другие детали и проводники схемы не должны касаться алюминиевой подложки.

    Симистор прикладывается к алюминию той частью корпуса, которая рассчитана под установку на радиатор.

    Следует использовать теплопроводящую пасту на площади соприкосновения корпуса симистора и алюминиевой подложки. Некоторые марки симисторов с неизолированным анодом обязательно требуется ставить через слюдяную прокладку.

    Вариант крепления симистора к подложке при помощи клёпки. С обратной стороны клёпка расплющивается заподлицо с поверхностью подложки

    Симистор нужно плотно прижать к основанию каким-то грузом и залить по периметру эпоксидным клеем либо закрепить каким-то образом без нарушения глади обратной стороны подложки (например, заклёпкой).

    Приготовление компаунда и заливка корпуса

    Под изготовление твёрдого тела электронного устройства потребуется изготовить компаундную смесь. Состав смеси компаунда делается на основе двух компонентов:

  • Эпоксидная смола без отвердителя.
  • Порошок алебастра.
  • Благодаря добавлению алебастра мастер решает сразу две задачи – получает исчерпывающий объём заливного компаунда при номинальном расходе эпоксидной смолы и создаёт заливку оптимальной консистенции.

    Смесь нужно тщательно перемешать, после чего можно добавить отвердитель и вновь тщательно перемешать. Далее аккуратно заливают «навесной» монтаж внутри картонного короба созданным компаундом.

    Так выглядит готовый экземпляр твердотельного реле, собранного своими руками.

    Несколько необычно и не очень презентабельно, но достаточно надёжно

    Заливку делают до верхнего уровня, оставив на поверхности лишь часть головки контрольного светодиода.

    Первоначально поверхность компаунда может выглядеть не совсем гладкой, но спустя некоторое время картинка изменится. Останется только дождаться полного застывания литья.

    По сути, применить можно любые подходящие для литья растворы. Главный критерий – состав заливки не должен быть электропроводящим, плюс должна формироваться хорошая степень жёсткости литья после застывания. Литой корпус твердотельного реле является своего рода защитой электронной схемы от случайных физических повреждений.

    Выводы и полезное видео по теме

    • Этот ролик показывает, как и на базе каких электронных компонентов можно сделать твердотельное реле. Автор доходчиво рассказывает обо всех деталях практики изготовления, с какими он столкнулся лично в процессе производства электронного коммутатора:
    • Видео о проблеме, с которой можно столкнуться после приобретения однофазного ТТР у продавцов из Китая. Попутно проводит своеобразный обзор устройства прибора коммутации:
    • Самостоятельное изготовление твердотельных реле – вполне возможное решение, но применительно к изделиям под низковольтную нагрузку, потребляющую относительно малую мощность.

    Более мощные и высоковольтные приборы сделать своими руками сложно. Да и обойдётся эта затея по финансам в такую же сумму, какой оценивается заводской экземпляр. Так что в случае надобности проще купить готовый прибор промышленного изготовления.

    Если у вас появились вопросы по сборке твердотельного реле, пожалуйста, задайте их в блоке с ми, а мы постараемся дать на них предельно понятный ответ. Там же можно поделиться опытом самостоятельного изготовления реле или сообщить ценную информацию по теме статьи.

    Твердотельное реле постоянного тока 12в своими руками

    Использовать твердотельное реле в силовых электронных схемах гораздо выгоднее, чем электромеханические, поскольку они демонстрируют большее количество срабатываний.

    Твердотельное реле относится к числу современных полупроводниковых приборов с силовыми симисторными, тиристорными(при переменном токе) или транзисторными (при постоянном токе) ключами. Оно является отличной альтернативой стандартному электромагнитному реле, контакторам или электромагнитным пускателям, поскольку гарантируют большую надёжность и безопасность соединения.

    Основная задача твердотельного реле – обеспечение связи низковольтных и высоковольтных электрических цепей.

    Устройство твердотельного реле

    Принцип построения этого устройства неизменен, независимо от конкретной модели.

    Таким образом, структура реле включает в себя:

    • вход;
    • оптическую развязку;
    • триггерную цепь;
    • цепь переключателя;
    • цепь защиты.

    Инструкция для самостоятельной сборки твердотельного реле на 12 В

    Если вы намерены собрать твердотельное реле, то вам понадобится соорудить цепочку с симистором, схемой управления и гальванической развязкой (по типу симисторной оптопары).

    В качестве иллюстративного образца предлагается воспользоваться следующими деталями:

    • симисторной оптопарой moc3083 (vd1);
    • симистором с изолированным анодом bt139-800 16a (v1 от philips);
    • сопротивлением для ограничения тока через светодиод moc3083 (r1 750ом 0,5вт);
    • светодиодом индикации ал307а (ld1);
    • резистором на управляющий электрод симистора 160 ом (r2 , 0.125вт).
    • для самостоятельной сборки твердотельного реле понадобится в первую очередь металлическая (лучше всего из алюминия) быстро проводящая тепло подложка. конкретные габариты подложки (размеры и толщина) зависят от того, какое количество тепла нужно будет отводить от симистора (учитывайте также, что и сама подложка может располагаться на поверхности из металла).
    • после потребуется опалубка под заливку. она должна быть таких размеров, чтобы вместить все компоненты устройства. под опалубку пойдёт любая подходящих габаритов пластиковая деталь.
    • клеевым пистолетом опалубка скрепляется с подложкой. герметизируются все имеющиеся щели.
    • размещается предварительно спаянная и протестированная схема. учтите, что не всегда можно сразу же точно определить положение выводов симистора. чтобы уточнить этот момент следует соединить тестер на мегаомах с выходными концами симистора. если симистор открывается, то уровень сопротивления вместо десятков мегаом снизится до единиц килоом.
    • между спинкой корпуса симистора и поверхностью подложки необходима прослойка из теплопроводной пасты (кпт-8). ранее не изолированный анод симистора также необходимо отгородить изоляционной прокладкой. в любом случае, ни одна составляющая схемы не должна иметь прямого контакта с металлической подложкой.
    • вновь вооружившись клеевым пистолетом нужно скрепить корпус симистора с подложкой.
    • уложить все прочие составляющие схемы, продолжая крепить их так, чтобы они не контактировали с подложкой.
    • залить форму компаундом.

    коммутационные разновидности твердотельного реле

    По типу коммутации существую следующие разновидности твердотельного реле:

    • приборы, осуществляющие нагрузки по ёмкостному и редуктивному типу, обладающие слабой индукцией;
    • приборы, оснащённые функцией случайного, либо мгновенного выключения, применяются для механизмов и систем, где возникает необходимость мгновенного срабатывания;
    • приборы с фазовым управлением, помогают настраивать нагревательные элементы и лампы накаливания.

    Защита твердотельного реле

    Для того, чтобы обеспечить бесперебойную работу реле применяется специальная цепь защиты. Она может быть внутренней или внешней.

    Для внутренней защиты можно воспользоваться разнообразными предохранителями:

    • g R –обеспечивает высокий уровень быстродействия, подходят для работы с широким спектром мощностей;
    • g S –применяются для работы с токами разной силы и помогают защищать полупроводники при излишне высоких нагрузках питающей сети;
    • a R –применяются как страховка от потерь, наносимых коротким замыканием.

    К сожалению, покупка такого предохранителя обычно немногим уступает цене, за которую приобретают само реле. Если на такую роскошь тратиться жалко, то можно воспользоваться  предохранителями класса В, С и D, которые не столь качественны, но и стоят гораздо меньше.

    Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик, буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Технические оборудование дома